
Hypothesis Testing with Kernel Embeddings on
Interdependent Data

Dino Sejdinovic

Department of Statistics
University of Oxford

joint work with
Kacper Chwialkowski and Arthur Gretton (Gatsby Unit, UCL)

9 April 2015
Dagstuhl

D. Sejdinovic (Statistics, Oxford) Testing with Kernels 09/04/15 1 / 19



Kernel Embedding

feature map: x 7→ k(·, x) ∈ Hk

instead of
x 7→ (ϕ1(x), . . . , ϕs(x)) ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x , y)

inner products easily computed

embedding:
P 7→ µk(P) = EX∼Pk(·,X ) ∈ Hk

instead of
P 7→ (Eϕ1(X ), . . . ,Eϕs(X )) ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX ,Y k(X ,Y )

inner products easily estimated

µk(P) represents expectations w.r.t. P , i.e.,
EX f (X ) = EX 〈f , k(·,X )〉Hk

= 〈f , µk(P)〉Hk
∀f ∈ Hk
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Kernel MMD

De�nition

Kernel metric (MMD) between P and Q:

MMDk(P,Q) = ‖EXk(·,X )− EY k(·,Y )‖2Hk

= EXX ′k(X ,X ′) + EYY ′k(Y ,Y ′)− 2EXY k(X ,Y )
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Kernel MMD

A polynomial kernel k(x , x ′) =
(
1 + x>x ′

)s
on Rp captures the

di�erence in �rst s (mixed) moments only

For a certain family of kernels (characteristic/universal):
MMDk(P,Q) = 0 i� P = Q: Gaussian exp(− 1

2σ2
‖z − z ′‖22),

Laplacian, inverse multiquadratics, B2n+1- splines...

Under mild assumptions, k-MMD metrizes weak* topology on
probability measures (Sriperumbudur, 2010):

MMDk(Pn,P)→ 0⇔ Pn  P
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Nonparametric two-sample tests

Testing H0 : P = Q vs. HA : P 6= Q
based on samples {xi}nxi=1 ∼ P, {yi}nyi=1 ∼ Q.

Test statistic is an estimate of
MMDk(P,Q) = EXX ′k(X ,X ′) + EYY ′k(Y ,Y ′)− 2EXY k(X ,Y ):

M̂MDk =
1

nx(nx − 1)

∑
i 6=j

k(xi , xj) +
1

ny (ny − 1)

∑
i 6=j

k(yi , yj)

− 2

nxny

∑
i ,j

k(xi , yj).

Degenerate U-statistic: 1√
n
-convergence to MMD under HA,

1
n
-convergence to 0 under H0.

O(n2) to compute (n = nx + ny ) � various approximations
(block-based, random features) trade computation for power.

Gretton et al (NIPS 2009, JMLR 2012, NIPS 2012)
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Test threshold

For i.i.d. data, under H0 : P = Q:
nxny
nx+ny

M̂MDk  
∑∞

r=1 λr
(
Z 2
r − 1

)
, {Zr}∞r=1

i .i .d .∼ N (0, 1)

{λr} depend on both k and P: eigenvalues of T : L2 → L2,

(Tf ) (x) 7→
ˆ

f (x ′)k̃(x , x ′)︸ ︷︷ ︸
centred

dP(x ′).

Asymptotic null distribution typically estimated using a permutation
test.

For interdependent samples, {Zr}∞r=1 are correlated, with the
correlation structure dependent on the correlation structure within the
samples.
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Nonparametric independence tests

H0 : X ⊥⊥ Y

HA : X 6 ⊥⊥ Y

Test statistic:

HSIC(X ,Y ) =
∥∥∥µκ(P̂XY )− µκ(P̂X P̂Y )

∥∥∥2
Hκ

,

with κ = k ⊗ l
Gretton et al (2005, 2008); Smola et al (2007);

Related to distance covariance (dCov) in
statistics literature Szekely et al (AoS 2007, AoAS
2009); S. et al (AoS 2013)
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HSIC computation

k( , )

`(
The Sealyham Terrier is the
couch potato of the terrier
world - he loves to lay
around and take naps...

,
Cairn Terriers are independent
little bundles of energy. They
are alert and active with the
trademark terrier temperament...

)

→K=

→L=

HSIC measures

average similarity

between the kernel

matrices:

HSIC(X ,Y ) =
1
n2
〈HKH,HLH〉

H = I − 1

n
11>

(centering matrix)

Extensions: conditional independence testing (Fukumizu, Gretton, Sun and Schölkopf,

2008; Zhang, Peters, Janzing and Schölkopf, 2011), three-variable interaction /
V-structure discovery (S., Gretton and Bergsma, 2013)
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Kernel tests on time series

Kacper Chwialkowski Arthur Gretton
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Test calibration for dependent observations
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Kernel MMD

De�nition

Kernel metric (MMD) between P and Q:

MMDk(P,Q) = ‖EXk(·,X )− EY k(·,Y )‖2Hk

= EXX ′k(X ,X ′) + EYY ′k(Y ,Y ′)− 2EXY k(X ,Y )
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Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt
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Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Density of V

n
Histogram of V

n,p
Correct threshold
Bootstrapped threshold

a = 0.4
D. Sejdinovic (Statistics, Oxford) Testing with Kernels 09/04/15 12 / 19



Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt
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Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt
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Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt
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Permutation test on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap

Wild bootstrap process (Leucht and Neumann, 2013):

Wt,n = e−1/lnWt−1,n +
√
1− e−2/lnεt where W0,n, ε1, . . . , εn

i.i.d.∼ N (0, 1), and

W̃t,n = Wt,n − 1

n

∑n

j=1
Wj,n.

M̂MDk,wb :=
1

n2x

nx∑
i=1

nx∑
j=1

W̃
(x)
i,nx

W̃
(x)
j,nx

k(xi , xj)−
1

n2x

ny∑
i=1

ny∑
j=1

W̃
(y)
i,ny

W̃
(y)
j,ny

k(yi , yj)

− 2

nxny

nx∑
i=1

ny∑
j=1

W̃
(x)
i,nx

W̃
(y)
j,ny

k(xi , yj).

Theorem (Chwialkowski, S. and Gretton, 2014)

Let k be bounded and Lipschitz continuous, and let {Xt} ∼ P and {Yt} ∼ Q

both be τ -dependent with τ(r) = O(r−6−ε), but independent of each other.

Then, under H0 : P = Q, ϕ
(

nxny
nx+ny

M̂MDk ,
nxny
nx+ny

M̂MDk,b

)
P→ 0 as nx , ny →∞,

where ϕ is the Prokhorov metric.
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Density of V

n
Histogram of V

n,w
Correct threshold
Bootstrapped threshold

a = 0.5
D. Sejdinovic (Statistics, Oxford) Testing with Kernels 09/04/15 14 / 19



Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Wild Bootstrap on AR(1): Xt+1 = aXt +
√
1− a2εt
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Test calibration for dependent observations

Two-sample test experiment \ method perm. wild

MCMC diagnostics i.i.d. vs i.i.d. (H0) .040 .012

i.i.d. vs Gibbs (H0) .528 .052

Gibbs vs Gibbs (H0) .680 .060
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Time Series Coupled at a Lag
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KCSD

HSIC

Xt = cos(φt,1), φt,1 = φt−1,1 + 0.1ε1,t + 2πf1Ts , ε1,t
i.i.d.∼ N (0, 1),

Yt = [2+ C sin(φt,1)] cos(φt,2), φt,2 = φt−1,2 + 0.1ε2,t + 2πf2Ts , ε2,t
i.i.d.∼ N (0, 1).

Parameters: C = 0.4, f1 = 4Hz ,f2 = 20Hz , 1
Ts

= 100Hz .

- M. Besserve, N.K. Logothetis, and B. Schölkopf. Statistical analysis of coupled time series

with kernel cross-spectral density operators. NIPS 2013.
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Summary

Interdependent data lead to incorrect Type I control for kernel tests
(too many false positives).

Consistency of a wild bootstrap procedure under weak long-range
dependencies (τ -mixing), applicable to both two-sample and
independence tests

Applications: MCMC diagnostics, time series dependence across
multiple lags

D. Sejdinovic (Statistics, Oxford) Testing with Kernels 09/04/15 17 / 19



Open questions

Interdependent case: how to select parameters of the wild bootstrap /
block bootstrap - requires estimating mixing properties of the time
series �rst?

Large-scale testing: tradeo�s between computation and power

How to interpret the discovered di�erences in distributions /
discovered dependence? Do we really care about all possible
di�erences between distributions?

Tuning parameters - can select kernels/hyperparameters to directly
optimize relative e�ciency of the test, but how does this a�ect
tradeo�s with interdependent data? Sensitive interplay between the
kernel hyperparameter and the wild bootstrap parameters

Multivariate interaction and graphical model selection -
approximations?
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Kernels and characteristic functions

E-distance/dCov of Székely and Rizzo (2004,2005),
Székely et al (2007):

V2(X ,Y ) = EXYEX ′Y ′
∥∥X − X ′

∥∥
2

∥∥Y − Y ′
∥∥
2

+EXEX ′
∥∥X − X ′

∥∥
2
EYEY ′

∥∥Y − Y ′
∥∥
2

− 2EXY
[
EX ′

∥∥X − X ′
∥∥
2
EY ′

∥∥Y − Y ′
∥∥
2

]
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DS, B. Sriperumbudur, A. Gretton and K. Fukumizu, Equivalence of distance-based and

RKHS-based statistics in hypothesis testing. Annals of Statistics 41(5), p. 2263-2291, 2013.
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Embeddings in Mercer's Expansion

Mercer's Expansion

For a compact metric space X , and a continous kernel k ,

k(x , y) =
∞∑
r=1

λrΦr (x)Φr (y),

with {λr ,Φr}r≥1 eigenvalue, eigenfunction pairs of f 7→
´
f (x)k(·, x)dP(x)

on L2(P).

Hk 3 k(·, x) ↔
{√

λrΦr (x)
}
∈ `2

Hk 3 µk(P) ↔
{√

λrEΦr (X )
}
∈ `2∥∥∥µk(P̂)− µk(Q̂)

∥∥∥2
Hk

=
∞∑
r=1

λr

(
1

nx

nx∑
t=1

Φr (Xt)−
1

ny

ny∑
t=1

Φr (Yt)

)2
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Wild Bootstrap

ρx = nx/n, ρy = ny/n

{Wt,n}1≤t≤n, EWt,n = 0, E [Wt,nWt′,n] = ζ

(
|t′−t|
`n

)
, with

limu→0 ζ(u)→ 1

ρxρynM̂MDk =
∞∑
r=1

λr

(
√
ρy

nx∑
t=1

Φr (Xt)√
nx
−√ρx

ny∑
t=1

Φr (Yt)√
ny

)2

ρxρynM̂MDk,wb =
∞∑
r=1

λr

(
√
ρy

nx∑
t=1

Φr (Xt)W̃
(y)
t,nx√

nx
−√ρx

ny∑
t=1

Φr (Yt)W̃
(y)
t,ny√

ny

)2

E [Φr (X1)W1,nΦs(Xt)Wt,n] = E [Φr (X1)Φs(Xt)] ζ
(
|t−1|
`n

)
−→
n→∞

E [Φr (X1)Φs(Xt)], ∀t, r , s provided dependence between X1 and Xt

�disappears fast enough� (a τ -mixing condition).
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ICML Workshop on Large-Scale Kernel Learning

Lille, France, 11 July 2015 (collocated with ICML 2015)

Foundational algorithmic techniques for large-scale kernel learning: matrix
factorization, randomization and approximation, variational inference and
sampling, inducing variables, random Fourier features, unifying frameworks

Interface between kernel methods and deep learning architectures

Tradeo�s between statistical and computational e�ciency in kernel methods

Stochastic gradient techniques with kernel methods

Large-scale multiple kernel learning

Large-scale representation learning with kernels

Large-scale kernel methods for complex data types beyond perceptual data

Con�rmed speakers: Francis Bach, Neil Lawrence, Russ
Salakhutdinov, Marius Kloft, Zaid Harchaoui

Deadline for Submissions: Friday, May 1st, 2015, 23:00 UTC.
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