Hypothesis Testing with Kernel Embeddings on Interdependent Data

Dino Sejdinovic

Department of Statistics University of Oxford

joint work with Kacper Chwialkowski and Arthur Gretton (Gatsby Unit, UCL)

> 9 April 2015 Dagstuhl

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-41-0) 09/04/15 1/19

⊞ ≯ k

 QQQ

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \ldots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily computed

4 **D** F

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \ldots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily computed
- **e** embedding:

 $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ instead of $P \mapsto (\mathbb{E}\varphi_1(X), \ldots, \mathbb{E}\varphi_s(X)) \in \mathbb{R}^s$

 $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X,Y} k(X,Y)$ inner products easily estimated

ik ⊞iki k

∢ □ ▶ ≺ n □

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \ldots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily computed
- **e** embedding:

 $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ instead of $P \mapsto (\mathbb{E}\varphi_1(X), \ldots, \mathbb{E}\varphi_s(X)) \in \mathbb{R}^s$

 $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X,Y} k(X,Y)$ inner products easily estimated

 $A \equiv 1$

 \leftarrow \Box

 \bullet $\mu_k(P)$ represents expectations w.r.t. P, i.e., $\mathbb{E}_X f(X) = \mathbb{E}_X \langle f, k(\cdot, X) \rangle_{\mathcal{H}_k} = \langle f, \mu_k(P) \rangle_{\mathcal{H}_k} \ \forall f \in \mathcal{H}_k$

Kernel MMD

Definition

Kernel metric (MMD) between P and Q :

$$
MMD_k(P, Q) = ||\mathbb{E}_X k(\cdot, X) - \mathbb{E}_Y k(\cdot, Y)||_{\mathcal{H}_k}^2
$$

=
$$
\mathbb{E}_{XX'} k(X, X') + \mathbb{E}_{YY'} k(Y, Y') - 2\mathbb{E}_X Y k(X, Y)
$$

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 3/19

Kernel MMD

- A polynomial kernel $k(x,x') = \left(1+x^\top x'\right)^s$ on \mathbb{R}^p captures the difference in first s (mixed) moments only
- For a certain family of kernels (characteristic/universal): $\text{MMD}_k(P, Q) = 0$ iff $P = Q$: Gaussian exp $\left(-\frac{1}{2\sigma^2} ||z - z'||_2^2\right)$ $\binom{2}{2}$, Laplacian, inverse multiquadratics, B_{2n+1} - splines...
- Under mild assumptions, k-MMD metrizes weak* topology on probability measures (Sriperumbudur, 2010):

$$
\text{MMD}_k(P_n, P) \to 0 \Leftrightarrow P_n \leadsto P
$$

ഹൈ

イロメ イ何 メイヨメ イヨメ ニヨ

Nonparametric two-sample tests

- **•** Testing H_0 : $P = Q$ vs. H_A : $P \neq Q$ based on samples $\{x_i\}_{i=1}^{n_x} \sim \mathbf{P}$, $\{y_i\}_{i=1}^{n_y} \sim \mathbf{Q}$.
- **•** Test statistic is an estimate of $\text{MMD}_k(P, Q) = \mathbb{E}_{XX'} k(X, X') + \mathbb{E}_{YY'} k(Y, Y') - 2\mathbb{E}_{XY} k(X, Y).$ $\widehat{\text{MMD}}_k = \frac{1}{n(n+1)}$ $n_x(n_x-1)$ \sum i≠j $k(x_i, x_j) + \frac{1}{n(n+1)}$ $n_y(n_y-1)$ \sum i≠j $k(y_i, y_j)$ − 2 $n_x n_y$ \sum i,j $k(x_i, y_j)$.
- Degenerate U-statistic: $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ -convergence to MMD under $\mathsf{H}_\mathsf{A},$ $\frac{1}{n}$ -convergence to 0 under $\mathbf{H_0}$.
- $O(n^2)$ to compute $(n = n_x + n_y)$ various approximations (block-based, random features) trade computation for power.

Gretton et al (NIPS 2009, JMLR 2012, NIPS 2012)

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 5 / 19

 QQQ

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

Test threshold

• For i.i.d. data, under H_0 : $P = Q$ $n_x n_y$ $\frac{n_x n_y}{n_x + n_y} \widehat{MMD}_k \rightsquigarrow \sum_{r=1}^{\infty} \lambda_r (Z_r^2 - 1), \quad \{Z_r\}_{r=1}^{\infty}$ $\sum_{r=1}^{\infty} \frac{i.i.d.}{\sim} \mathcal{N}(0,1)$

• $\{\lambda_r\}$ depend on both k and P: eigenvalues of **T** : $L_2 \rightarrow L_2$,

$$
(\mathsf{T} f)(x) \mapsto \int f(x') \underbrace{\tilde{k}(x,x')}_{\text{centerd}} d\mathsf{P}(x').
$$

- Asymptotic null distribution typically estimated using a permutation test.
- For interdependent samples, $\{Z_r\}_{r=1}^{\infty}$ $\sum_{r=1}^{\infty}$ are correlated, with the correlation structure dependent on the correlation structure within the samples.

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 6 / 19

K ロ > K d > K 글 > K 글 > → 글 → K O Q O

Nonparametric independence tests

 \bullet H₀ : $X \perp Y$ \bullet H_A : X $\mathbb{\perp}$ Y

 Ω

K ロ > K @ > K 경 > K 경 > 시 경

Nonparametric independence tests

- \bullet H₀ : $X \perp\!\!\!\perp Y \Leftrightarrow P_{XY} = P_X P_Y$
- \bullet H_A : X $\mathbb{\perp}$ Y \Leftrightarrow P_{XY} \neq P_XP_Y
- **•** Test statistic: $\text{HSIC}(X, Y) = \left\| \mu_{\kappa}(\hat{P}_{XY}) - \mu_{\kappa}(\hat{P}_{X}\hat{P}_{Y}) \right\|$ 2 \mathcal{H}_κ [,] with $\kappa = k \otimes l$ Gretton et al (2005, 2008); Smola et al (2007); Related to distance covariance (dCov) in statistics literature Szekely et al (AoS 2007, AoAS

2009); S. et al (AoS 2013)

 \rightarrow \rightarrow \rightarrow \rightarrow

HSIC computation

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 8/19

メロト メ都 トメ 君 トメ 君 トッ 君

HSIC computation

 $k(x_i, x_j)$

- **e** HSIC measures average similarity between the kernel matrices: $HSIC(X, Y) =$ 1 $\frac{1}{n^2}$ $\langle H\mathbf{K}H, H\mathbf{L}H \rangle$
	- $H = I \frac{1}{n}$ $\frac{1}{n}$ 11 $^\top$ (centering matrix)

不良 医牙

4 D F

в

HSIC computation

 $k(x_i, x_j)$

- **e** HSIC measures average similarity between the kernel matrices: $HSIC(X, Y) =$ 1 $\frac{1}{n^2}$ $\langle H\mathbf{K}H, H\mathbf{L}H \rangle$
	- $H = I \frac{1}{n}$ $\frac{1}{n}$ 11 $^\top$ (centering matrix)

(ロト イ母) イヨト イ

Extensions: conditional independence testing (Fukumizu, Gretton, Sun and Schölkopf, 2008; Zhang, Peters, Janzing and Schölkopf, 2011), three-variable interaction / V-structure discovery (S., Gretton and Bergsma, 2013)

 Ω

Kernel tests on time series

Kacper Chwialkowski **Arthur Gretton**

4 ロ ▶ (母

不是 医牙 Þ ÷.

 QQ

Test calibration for dependent observations

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 10 / 19

Kernel MMD

Definition

Kernel metric (MMD) between P and Q :

$$
MMD_k(P, Q) = ||\mathbb{E}_X k(\cdot, X) - \mathbb{E}_Y k(\cdot, Y)||_{\mathcal{H}_k}^2
$$

=
$$
\mathbb{E}_{XX'} k(X, X') + \mathbb{E}_{YY'} k(Y, Y') - 2\mathbb{E}_X Y k(X, Y)
$$

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 11 / 19

Wild Bootstrap

Wild bootstrap process (Leucht and Neumann, 2013):

 $W_{t,n}=e^{-1/l_n}W_{t-1,n}+\sqrt{1-e^{-2/l_n}}\epsilon_t$ where $W_{0,n},\epsilon_1,\ldots,\epsilon_n\stackrel{i.i.d.}{\sim}\mathcal{N}(0,1)$, and $\tilde{W}_{t,n} = W_{t,n} - \frac{1}{n}$ $\frac{1}{n}\sum_{j=1}^n W_{j,n}$.

$$
\widehat{\text{MMD}}_{k,wb} := \frac{1}{n_x^2} \sum_{i=1}^{n_x} \sum_{j=1}^{n_x} \tilde{W}_{i,n_x}^{(x)} \tilde{W}_{j,n_x}^{(x)} k(x_i, x_j) - \frac{1}{n_x^2} \sum_{i=1}^{n_y} \sum_{j=1}^{n_y} \tilde{W}_{i,n_y}^{(y)} \tilde{W}_{j,n_y}^{(y)} k(y_i, y_j) - \frac{2}{n_x n_y} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} \tilde{W}_{i,n_x}^{(x)} \tilde{W}_{j,n_y}^{(y)} k(x_i, y_j).
$$

Theorem (Chwialkowski, S. and Gretton, 2014)

Let k be bounded and Lipschitz continuous, and let ${X_t} \sim P$ and ${Y_t} \sim Q$ both be τ -dependent with $\tau(r) = O(r^{-6-\epsilon})$, but independent of each other. Then, under H_0 : $P = Q$, $\varphi \left(\frac{n_x n_y}{n + n} \right)$ $\frac{n_x n_y}{n_x + n_y} \widehat{MMD}_k$, $\frac{n_x n_y}{n_x + n_y}$ $\sqrt{\frac{n_x n_y}{n_x + n_y}}$ $\widehat{MMD}_{k,b}$ $\Big) \stackrel{P}{\rightarrow} 0$ as $n_x, n_y \rightarrow \infty$, where φ is the Prokhorov metric.

Test calibration for dependent observations

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 15 / 19

∢⊡

Time Series Coupled at a Lag

$$
X_t = \cos(\phi_{t,1}), \qquad \phi_{t,1} = \phi_{t-1,1} + 0.1\epsilon_{1,t} + 2\pi f_1 T_s, \quad \epsilon_{1,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1),
$$

$$
Y_t = [2 + C \sin(\phi_{t,1})] \cos(\phi_{t,2}), \quad \phi_{t,2} = \phi_{t-1,2} + 0.1\epsilon_{2,t} + 2\pi f_2 T_s, \quad \epsilon_{2,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1).
$$

Parameters: $C = 0.4$, $f_1 = 4Hz$, $f_2 = 20 Hz$, $\frac{1}{T_s} = 100 Hz$.

- M. Besserve, N.K. Logothetis, and B. Schölkopf. Statistical analysis of coupled time series with kernel cross-spectral density operators. NIPS 2013.

4 **D** F

 Ω

- Interdependent data lead to incorrect Type I control for kernel tests (too many false positives).
- Consistency of a wild bootstrap procedure under weak long-range dependencies (τ -mixing), applicable to both two-sample and independence tests
- Applications: MCMC diagnostics, time series dependence across multiple lags

 QQ

Open questions

- Interdependent case: how to select parameters of the wild bootstrap / block bootstrap - requires estimating mixing properties of the time series first?
- Large-scale testing: tradeoffs between computation and power
- How to interpret the discovered differences in distributions / discovered dependence? Do we really care about all possible differences between distributions?
- Tuning parameters can select kernels/hyperparameters to directly optimize relative efficiency of the test, but how does this affect tradeoffs with interdependent data? Sensitive interplay between the kernel hyperparameter and the wild bootstrap parameters
- Multivariate interaction and graphical model selection approximations?

 QQ

イロト イ押 トイヨ トイヨト

References

- **K.** Chwialkowski, DS and A. Gretton, A wild bootstrap for degenerate kernel tests. Advances in Neural Information Processing Systems (NIPS) 27, Dec. 2014.
- DS, B. Sriperumbudur, A. Gretton and K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist. 41(5): 2263-2291, Oct. 2013.
- M. Besserve, N.K. Logothetis and B. Schölkopf, Statistical analysis of coupled time series with kernel cross-spectral density operators. Advances in Neural Information Processing Systems (NIPS) 26, Dec. 2013.
- A. Leucht and M.H. Neumann, Dependent wild bootstrap for degenerate U- and V-statistics. J. Multivar. Anal. 117:257-280, 2013.
- A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf and A. Smola, A Kernel Two-Sample Test. J. Mach. Learn. Res. 13(Mar): 723-773, 2012.

 QQ

イロト イ押 トイヨ トイヨト

Kernels and characteristic functions

DS, B. Sriperumbudur, A. Gretton and K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Annals of Statistics 41(5), p. 2263-2291, 2013.

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 20 / 19

 Ω

(□) (何) (三)

Embeddings in Mercer's Expansion

Mercer's Expansion

For a compact metric space \mathcal{X} , and a continous kernel k,

$$
k(x,y)=\sum_{r=1}^{\infty}\lambda_r\Phi_r(x)\Phi_r(y),
$$

with $\{\lambda_r,\Phi_r\}_{r\geq 1}$ eigenvalue, eigenfunction pairs of $f\mapsto \int f(x) k(\cdot,x) dP(x)$ on $L_2(P)$.

$$
\mathcal{H}_k \ni k(\cdot, x) \leftrightarrow \left\{ \sqrt{\lambda_r} \Phi_r(x) \right\} \in \ell_2
$$
\n
$$
\mathcal{H}_k \ni \mu_k(P) \leftrightarrow \left\{ \sqrt{\lambda_r} \mathbb{E} \Phi_r(X) \right\} \in \ell_2
$$
\n
$$
\left\| \mu_k(\hat{P}) - \mu_k(\hat{Q}) \right\|_{\mathcal{H}_k}^2 = \sum_{r=1}^{\infty} \lambda_r \left(\frac{1}{n_x} \sum_{t=1}^{n_x} \Phi_r(X_t) - \frac{1}{n_y} \sum_{t=1}^{n_y} \Phi_r(Y_t) \right)^2
$$

Wild Bootstrap

\n- \n
$$
\rho_X = n_X/n, \, \rho_Y = n_Y/n
$$
\n
\n- \n
$$
\{W_{t,n}\}_{1 \leq t \leq n}, \, \mathbb{E}W_{t,n} = 0, \, \mathbb{E}\left[W_{t,n}W_{t',n}\right] = \zeta\left(\frac{|t'-t|}{\ell_n}\right), \text{ with } \lim_{u \to 0} \zeta(u) \to 1
$$
\n
\n

$$
\rho_{x}\rho_{y}n\widehat{MMD}_{k} = \sum_{r=1}^{\infty} \lambda_{r} \left(\sqrt{\rho_{y}} \sum_{t=1}^{n_{x}} \frac{\Phi_{r}(X_{t})}{\sqrt{n_{x}}} - \sqrt{\rho_{x}} \sum_{t=1}^{n_{y}} \frac{\Phi_{r}(Y_{t})}{\sqrt{n_{y}}}\right)^{2}
$$

$$
\rho_{x}\rho_{y}n\widehat{MMD}_{k,wb} = \sum_{r=1}^{\infty} \lambda_{r} \left(\sqrt{\rho_{y}} \sum_{t=1}^{n_{x}} \frac{\Phi_{r}(X_{t})\widetilde{W}_{t,n_{x}}^{(y)}}{\sqrt{n_{x}}} - \sqrt{\rho_{x}} \sum_{t=1}^{n_{y}} \frac{\Phi_{r}(Y_{t})\widetilde{W}_{t,n_{y}}^{(y)}}{\sqrt{n_{y}}}\right)^{2}
$$

 $\mathbb{E}\left[\Phi_r(X_1) W_{1,n} \Phi_s(X_t) W_{t,n}\right] = \mathbb{E}\left[\Phi_r(X_1) \Phi_s(X_t)\right] \zeta\left(\frac{|t-1|}{\ell}\right)$ $\frac{-1|}{\ell_n}\Bigg) \xrightarrow[n \to \infty]{}$ $E[\Phi_r(X_1)\Phi_s(X_t)]$, $\forall t, r, s$ provided dependence between X_1 and X_t "disappears fast enough" (a τ -mixing condition).

D. Sejdinovic (Statistics, Oxford) [Testing with Kernels](#page-0-0) 09/04/15 22 / 19

 QQ

K ロ K K 個 K K 결 K K 결 K (결)

ICML Workshop on Large-Scale Kernel Learning

Lille, France, 11 July 2015 (collocated with ICML 2015)

- Foundational algorithmic techniques for large-scale kernel learning: matrix factorization, randomization and approximation, variational inference and sampling, inducing variables, random Fourier features, unifying frameworks
- **O** Interface between kernel methods and deep learning architectures
- \bullet Tradeoffs between statistical and computational efficiency in kernel methods
- **•** Stochastic gradient techniques with kernel methods
- **O** Large-scale multiple kernel learning
- Large-scale representation learning with kernels
- Large-scale kernel methods for complex data types beyond perceptual data
- **Confirmed speakers: Francis Bach, Neil Lawrence, Russ** Salakhutdinov, Marius Kloft, Zaid Harchaoui
- Deadline for Submissions: Friday, May 1st, 2015, 23:00 UTC.

 QQ

イロト イ押 トイヨ トイヨ トー