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Detecting pairwise dependence

X1: Y1: The Dandie Dinmont Terrier is a sweet and hardy

dog with lots of personality and pluck. He shows

incredible loyalty to his owner, and is utterly devoted

to his family. He is a�ectionate and loves to cuddle

and be held in his owner's arms. He will follow you all

over the house...

X2:

?⇐⇒
Y2: The Sealyham Terrier is the couch potato of the

terrier world - he loves to lay around and take naps.

He is a clown with a sense of humor, but he is still a

true terrier: determined, keen, alert, inquisitive, and

spirited....

X3:

· · ·

Y3: Cairn Terriers are independent little bundles of

energy. They are alert and active with the trademark

terrier temperament: inquisitive, bossy, feisty, and

fearless. They are intelligent and can be a bit

mischievous. Warn your �owers � many Cairns love to

dig! They are not usually problem barkers, but will

bark if bored or lonely...

· · ·[from justdogbreeds.com]
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Detecting pairwise dependence

k( , )

`(
The Sealyham Terrier is the
couch potato of the terrier
world - he loves to lay
around and take naps...

,
Cairn Terriers are independent
little bundles of energy. They
are alert and active with the
trademark terrier temperament...

)

→K=

→L=

Idea: measure

similarity between the

kernel matrices

〈
K̃, L̃

〉
= Tr

(
K̃L̃
)

K̃ = HKH, where
H = I − 1

n
11>

(centering matrix)
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Kernel Embedding

feature map: x 7→ k(·, x) ∈ Hk

instead of

x 7→ (ϕ1(x), . . . , ϕs(x)) ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x , y)

inner products easily computed

embedding:
P 7→ µk(P) = EX∼Pk(·,X ) ∈ Hk

instead of

P 7→ (Eϕ1(X ), . . . ,Eϕs(X )) ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX ,Y k(X ,Y )

inner products easily estimated
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) (Borgwardt et al, 2006; Gretton et al,

2007): distance between probabilities P and Q:

MMD2
k(P,Q) = ‖µk(P)− µk(Q)‖2H

k
= sup

f∈H
k
: ‖f ‖H

k
≤1

[EX∼Pf (X )− EY∼Qf (Y )]

Characteristic kernels: MMDk(P,Q) = 0 if and only if P = Q: includes

Gaussian exp(− 1

2σ2 ‖x − x ′‖2
2
), Laplacian, Matérn etc (Sriperumbudur, 2010).
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Two-Sample problem

We are given {xi}nxi=1 ∼ P, {yi}nyi=1 ∼ Q. Are P and Q di�erent?
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Function Showing Di�erence in Distributions

Maximum mean discrepancy: �nd a smooth function that

distinguishes P vs. Q:

MMD(P,Q;F ) := sup
f ∈F

[EX∼Pf (X )− EY∼Qf (Y )]
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Function Showing Di�erence in Distributions

What if the �witness� is not smooth?
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Smoothness regulated by the choice of the kernel k , e.g., wider

bandwidth in gaussian kernels implies smoother functions.

Dino S. (Gatsby Unit, UCL) Kernel Hypothesis Testing Berlin, 28 July 2014 9 / 20



Kernel mean trick

MMD2

k
(P,Q) = ‖µk(P)− µk(Q)‖2Hk

= Ek(X ,X ′) + Ek(Y ,Y ′)− 2Ek(X ,Y )

Estimate with

M̂MD =
1

nx(nx − 1)

∑

i 6=j

k(xi , xj) +
1

ny (ny − 1)

∑

i 6=j

k(yi , yj)

− 2

nxny

∑

i ,j

k(xi , yj).

O
(
n2
)
time to compute M̂MD: limited data, unlimited time
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Limited time, unlimited data

M̂MD1

M̂MD2

M̂MDn/B

...

Process blocks of size B at a time

Complexity O(nB)
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Statistical Hypothesis Testing

H0 : P = Q (null hypothesis)

HA : P 6= Q (alternative hypothesis)

Observe samples {xi}nxi=1 ∼ P, {yi}nyi=1 ∼ Q.

Compute the value of the statistic M̂MD and if M̂MD is:

�further from zero than what can be attributed to chance�: reject H0

otherwise: do not reject H0
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Testing for independence via embeddings

H0 : X ⊥⊥ Y (null hypothesis)

HA : X 6 ⊥⊥ Y (alternative hypothesis)

Hilbert-Schmidt Independence Criterion (HSIC)

Gretton et al (2005, 2008); Smola et al (2007):
‖µκ(PXY )− µκ(PXPY )‖2Hκ

Empirical HSIC= 1
n2

Tr
(
K̃L̃
)

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"
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Computing the threshold

distribution under the null hypothesis:
nxny
nx+ny

M̂MD
d→∑∞

r=1 λr
(
Z 2
r − 1

)
, {Zr} i .i .d .∼ N (0, 1)

{λr} depend on the kernel k and the underlying distribution P

Need the (1− α)-quantile of the null distribution:

Fit some simple parametric form to the null distribution (no guarantees)
Estimate λr 's from the data (consistent, but requires
eigendecomposition of a kernel matrix)
Permutation test: merge the samples from P and Q together, split
them randomly into equal proportions and recompute statistic many
times, i.e., generate samples from the null

Dino S. (Gatsby Unit, UCL) Kernel Hypothesis Testing Berlin, 28 July 2014 14 / 20



Two Sample Testing

Is there a statistically signi�cant di�erence between two populations?

t-tests: Is the e�ect of a new drug di�erent from placebo?

Data integration: can we train a model on data from two di�erent
sources - or should we train two separate models?
Interpreting cluster analysis: hierarchical clustering cannot reliably
distinguish between lung cancer cells and ovarian cancer cells on NCI60
dataset (Szekely & Rizzo, 2005) - is this the failure of the algorithm or is
there really no di�erence between the two?
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HSIC for Feature Selection

Pick your favourite dependence measure I which is:

expressive enough (ideally captures nonlinear dependence)
easy to compute (even in high dimensions)

HSIC, dCor, COCO, NOCCO...

Among the set of features S =
{
X (1), . . . ,X (s)

}
, pick the subset T of

size at most t < s which still contains relevant information about Y ,

i.e., we wish to

maximizeT ⊂S I (T ;Y ), subject to |T | ≤ s.

Forward Selection, Backward elimination...
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Kernel selection: hard-to-detect di�erences
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Good kernel selection crucial for the test power: scale at which the

di�erence exists is much smaller than the overall scale of the

distribution.
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Other topics

Testing for conditional independence

Testing for multivarate interaction

Kernel Bayes rule

Using kernel embeddings to learn proposals in MCMC

???
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Summary

Kernel embeddings are awesome - computationally e�cient ways to do

fully nonparametric testing and inference

Flexible and modular framework for testing and feature selection in

Shogun
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