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Adaptive Markov Chain Monte Carlo

Kernel Adaptive Metropolis Hastings — Formal Description

Synthetic examples: Convergence Statistics

» What proposal and scaling to choose for MCMC?

» Adaptive MCMC [1]: use history of Markov chain to learn structure of target, e.g. covariance.
» Only able to learn global linear covariance, i.e., scaling in principal directions.

» May be locally miscalibrated for strongly non-linear targets.

Motivation: Intractable & Non-linear Targets

» Non-linear targets: Hamiltonian Monte Carlo and MALA work great.
» However, those depend on gradients and second order information.

» Sometimes unavailable or expensive, e.g. in Bayesian GP classification, and
more generally in Pseudo-Marginal MCMC [2].

» Right: Sliced posterior over hyperparameters of a GP classifier on UCI Glass.

Want adaptive sampler that learns the shape of non-linear targets without higher order information.

Kernel Adaptive Metropolis Hastings — lllustration

Current point: y, a subsample of Markov chain history z = {z;}!_;. Goal is an intelligent proposal x*

» Capture non-linearities using linear covariance C; in feature space H.
» Sample f € H from the Gaussian measure corresponding to (5.
» Find a point x™ whose feature mapping ¢(x*) is close to f

Feature space H
O(y)

Input space A

Find pre-image in X

Embeddings and Covariance in RKHS

» For any positive semidefinite function k, there is a unique RKHS . Can consider x — k(-, x) as feature map.
» Embedding of a probability measure: up = [ k(-, x) dP(x) satisfies (f, up)y, = [ f(x)dP(x) Vf € H,.
» Covariance operator: Cp : Hj — Hy is given by Cp = [ k(-,x) ® k(-, x) dP(x) — pup @ up [4]

» [ hese can be estimated as
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The empirical covariance captures non-linear features of the underlying distribution (c.f. Kernel PCA [6])

Current point: y, a subsample of Markov chain history z = {z;}"_;. Goal is intelligent proposal x™

1. Sample Gaussian Measure in RKHS: For 5 ~ N(0, ”72/,7), the represented RKHS element
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has mean k(-, y) and covariance “-G,.

2. Find a point x* in input space X’ with the feature embedding ¢(x*) = k(-, x™) close to f by considering
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taking a single gradient step w.r.t g, and (optionally) add 'exploration term’ & ~ A/(0,~+?). This gives
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where M , = 21 [Vxk(x, z1)|x=y, - .., Vxk(x, zn)|x=y| is based on kernel gradients (readily available).
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3. Integrating out RKHS samples and gradient step (i.e., 8 and &) gives Gaussian proposal on input space.

Proposed Algorithm: MCMC Kameleon

MCMC Kameleon

Input: unnormalized target m, subsample size n, scaling parameters v, v, kernel k,

At iteration t + 1,

1. Obtain a random subsample z = {z;}7_; of the chain history {x; 1

1=0"
2. Sample proposed point x* from gz(-|x;) = N (x¢, 721 + VZMLX,_LHMZXt),

3. Accept/Reject with standard MH ratio:

*

X", W.p. min{l,

7T(X*)qz(XtIX*)}
Xt4+1 = . W(Xt)qz(X*|Xt) ,
x¢, otherwise.

Straightforward to use in Pseudo-Marginal MCMC [2].

Kameleon proposals capture local covariance structure!

Examples of Covariance Structure for Standard Kernels

» Linear kernel: k(x,x’) = x'x’
az2(-ly) = Ny, ~*1 + 4°Z ' HZ)
which results in the classical Adaptive Metropolis of [5].

» Gaussian kernel: k(x, x’) = exp (—%0‘2 | x — x’||§)
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where the previous points z; influence the covariance, weighted by their similarity k(y, z;) to current point y.

8-dim. Banana of [5]: moderately twisted (top), strongly twisted (middle) and 8-dim Flower (bottom).
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Reported are acceptance rates and errors for means and quantiles.

Real-life Example: Bayesian Gaussian Process Classification

» Consider a standard GPC model
p(F,y,0) = p(0)p(F|0)p(y|f)

where p(f|0) is a Gaussian Process with an exponentiated quadratic covariance (ARD: one scale parameter
per input space dimension), and p(y|f) is a sigmoidal function.

» Recent work [3] focused on Pseudo-Marginal MCMC to sample p(0|y) = p(0) [ dfp(0, f|y)p(f|0).
» Unbiased estimate of p(y|f) via importance sampling with g(f) obtained via Expectation Propagation:
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» No access to likelihood, gradient, or Hessian of the target.
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Performance on UCI Glass dataset: 8-dimensional non-linear posterior p(f|y).
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