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Problem outline
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N + 1 half-duplex nodes

I each node has a k-bit message to
transmit to all others

I Can all nodes transmit at the
same frequency without elaborate
time scheduling?
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I compressed sensing based decoding
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Compressed sensing

I Compressed sensing (Candes, Romberg and Tao 2006;
Donoho 2006) combines sampling and compression steps
into one - into taking random linear projections.
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Embracing the additive nature of wireless

I (Zhang and Guo 2010): each node is assigned a (known)
dictionary of (sparse) on-o� signalling codewords, each
codeword corresponding to a single message

I Own transmissions seen as erasures in dictionary

I The dictionary size exponential in the number of bits k in a
message - sparse recovery problem of size 2kN
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Combinations of the codebook elements?

Received
waveform
by user 2

Channel
Impulse
Response

Codeword
span

Transmitted codeword
by user 1

I Idea: Transmit (weighted) sums of a �xed number l of
on-o� signalling codewords.

I the choice of the l-combination of the dictionary elements
carries information

I Requires e�cient encoding of messages into l-combinations:
constant weight coding (l out of L codes)

I Need l� L for sparse recovery



Reduction of complexity

I (Zhang and Guo, 2010): k = log2 L - sparse recovery problem
of size 2kN

I CCSM: k ≈ log2
(
L
l

)
= O(Lα log2 L), for l = Lα, 0 < α < 1

- sparse recovery problem of size∼ k1/αN
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encoder i

φC : 00000 7→ 010100000

φC : 00001 7→ 000101000

· · ·
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Constant weight coding

I Combinatorial representation of information

I using l-combinations of the set of L elements, i.e., length-L
binary vectors with exactly l ones.

I l� L (sparse)

De�nition

An (L, l)-constant weight code is a set of length-L binary
vectors with Hamming weight l:

C ⊆ {c ∈ FL2 : wH(c) = l}.

I single-bit error/single-type error
detection

I two-out-of-�ve barcode



Constant weight coding

I Set of possible messages: S = {0, 1 . . . ,K − 1}. Usually
K = 2k, and we identify S ↔ Fk2.

I An (L, l)-constant weight code is C ⊆ {c ∈ FL2 : wH(c) = l}.
I Goal: construct a bijective map φC : S → C

I Enumeration approaches:

I (Schalkwijk 1972), (Cover 1973): lexicographic ordering of
codewords, requires registers of length O(L).

I (Ramabadran 1990): arithmetic coding, computational
complexity O(L).

I (Knuth 1986): complementation method, computational
complexity O(L) - but much faster in practice. Works only
for balanced codes: l = bL/2c.

I Can we do better when l� L?

I (Tian, Vaishampayan, Sloane 2009): embed both S and C
into Rl and establish bijective maps by dissecting certain
polytopes in Rl.
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Embedding C into Rl

I Given a constant-weight codeword c, de�ne
φ(c) = (y1L , . . . ,

yl
L ) ∈ Rl, with yi:= position of the i-th 1 in

c.

I for L = 5, l = 2, φ(01010) = (2/5, 4/5).

I φ(C) is a discrete subset of the convex hull Tl of the points:

(0, 0, . . . 0, 0)
(0, 0, . . . 0, 1)
...

... . . .
...

...
(0, 1, . . . 1, 1)
(1, 1, . . . 1, 1)



C embedded in a tetrahedron
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I T2 is the right triangle with vertices (0, 0), (0, 1), (1, 1)

I V ol(Tl) =
1
l! (the unit cube can be split into l! tetrahedra

congruent to Tl)



The case l = 2
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Assume: information is a brick

I Brick Bl ⊂ Rl is a hyper-rectangle

Bl := [0, 1]×[1
2
, 1]×[2

3
, 1]×· · ·×[ l − 1

l
, 1]

I Represent messages s ∈ {0, 1, . . . ,K − 1},
K ≤

(
L
l

)
as integer l-tuple

(b
(s)
1 , b

(s)
2 , . . . , b

(s)
l ), s.t.

(
b
(s)
1
n

,
b
(s)
2
n

, . . . ,
b
(s)
l
n

) ∈ Bl: quotient and
remainder

I V ol(Bl) =
1
l! = V ol(Tl)
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Dissections
Hilbert's third problem:
For any two polyhedra of the same volume, is it

possible to dissect one into a �nite number of pieces

that can be rearranged to give the other?

I In l = 2 dimensions (Bolyai-Gerwien 1833): yes

�scissor-equivalence�

I In d ≥ 3 dimensions (Dehn, 1902): no - polyhedra must
have equal Dehn invariants.
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Encoding

x

y

z

1

1/2

1/3

B3

x
y

z

T3

(0,0,0)

(0,0,1)

(0,1,1) (1,1,1)

I messages S = {0, 1 . . . ,K − 1} ←→ Bl ⊂ Rl diss.
←→

Tl ⊂ Rl

←→ constant weight code C
I (Tian, Vaishampayan, Sloane 2009) give an explicit
recursive dissection of Bl into Tl computable in O(l2)



Rate

I CWC rate: R(C) = 1
L log2 |C| ≤ 1

L log2
(
L
l

)
= O(l log2 LL )→ 0,

L→∞, when l� L.

CCSM rate 6= CWC rate

I CCSM rate: N
M

(
log2

(
L
l

)
+ lq

)
, where

I M is the time duration of the waveforms (number of rows in
the CS problem + number of own transmissions)

I Typical CS results: it su�ces to take M to be the number
of non-zeros × log (size of the vector)

I M = O(lN log2(LN))⇒ CCSM rate = O( log2 L
log2 L+log2N

)
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Channel signatures

Received
waveform
by user 2

Channel
Impulse
Response

Codeword
span

Transmitted codeword
by user 1

Transmitted
codeword
by user 2

Modified
codeword
span

Received waveform by
user 2 (from user 1)

I Each user convolves codebook elements with the channel
impulse response

I Can subtract echoes of its own transmissions
(self-interference remover)



Decoder
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Nĉ

1

w

1

C


0

1i

1i

N

...

...

self-channel

at i

weighing

demapper

CWC

demapper

additive 

noise

iz~

xi = Sici

yi = Ei

 N∑
j=0

hi,j ∗ Sjcj + z̃i

−Ei (hi,i ∗ Sici) = A−iv−i + zi



Sparse recovery solver

yi = Ei

 N∑
j=0

hi,j ∗ Sjcj + z̃i

−Ei (hi,i ∗ Sici) = A−iv−i + zi

I User i needs to solve the following problem to detect the
desired signal:

v̂−i = argmin
v−i

‖yi −A−iv−i‖2
s.t. ‖cj‖0 = l, for all j 6= i,

I A non-convex optimisation problem.

I Exactly Nl out of NL entries in v−i are non-zero - but
sparsity level is: l

L � 1
I Can use any of the myriad of CS decoding algorithms.



Sparse recovery solver

yi = Ei

 N∑
j=0

hi,j ∗ Sjcj + z̃i

−Ei (hi,i ∗ Sici) = A−iv−i + zi

I User i needs to solve the following problem to detect the
desired signal:

v̂−i = argmin
v−i

‖yi −A−iv−i‖2
s.t. ‖cj‖0 = l, for all j 6= i,

I A non-convex optimisation problem.

I Exactly Nl out of NL entries in v−i are non-zero - but
sparsity level is: l

L � 1
I Can use any of the myriad of CS decoding algorithms.



Sparse recovery solver

yi = Ei

 N∑
j=0

hi,j ∗ Sjcj + z̃i

−Ei (hi,i ∗ Sici) = A−iv−i + zi

I User i needs to solve the following problem to detect the
desired signal:

v̂−i = argmin
v−i

‖yi −A−iv−i‖2
s.t. ‖cj‖0 = l, for all j 6= i,

I A non-convex optimisation problem.

I Exactly Nl out of NL entries in v−i are non-zero - but
sparsity level is: l

L � 1
I Can use any of the myriad of CS decoding algorithms.



Sparse recovery solver

I Basis Pursuit/LASSO/convex relaxation (Tibshirani 1996),
(Chen, Donoho, and Saunders 1998)

I LARS / homotopy (Efron et al, 2004)

I Greedy iterative methods:

I Compressive Sampling Matching Pursuit - CoSaMP
(Needell and Tropp 2009)

I Subspace Pursuit - SP (Dai and Milenkovic 2009)



Subspace Pursuit

Greedily searches for the support set S such that y is closest to
span(AS).

1. Initialise. Set S to the Nl columns that maximize |〈ai, y〉|
2. Identify further candidates. Set S ′ to the Nl columns that

maximize |〈ai, y − proj(y, span(AS)〉|
3. Merge and Prune. Set S to the Nl columns from S ∪ S ′

with largest magnitudes in A+
S∪S′y

4. Iterate (2)-(3) until the stopping criterion holds.

y
yr

span(AS)

proj(y, span(AS))



Group Subspace Pursuit

Sparse vector has additional structure: each of N subvectors has
exactly l non-zero entries.

1. Initialise. Set S to the union of sets of l columns within
each group of L that maximize |〈ai, y〉|

2. Identify further candidates. Set S ′ to the union of sets of l
columns within each group of L that maximize
|〈ai, y − proj(y, span(AS)〉|

3. Merge and Prune. Set S to the union of sets of l columns
within each group of L with largest magnitudes in A+

S∪S′y

4. Iterate (2)-(3) until the stopping criterion holds.



Outline

CS for multiterminal communications

Combinatorial encoder

Sparse recovery solver

Simulation results



Group Subspace Pursuit (2)
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Figure: Performance comparison of Basis Pursuit/Lasso (BP), Group
Basis Pursuit (GBP) and Group Subspace Pursuit (GSP). N = 10,
l = 4, L = 32



CCSM Performance
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Figure: Performance of the proposed method in terms of message
error rate: In this case there are (N + 1) = 5 users simultaneously
broadcasting messages using CCSM with L = 64, l = 12.



Comparison to CSMA/CA and TDMA (1)
1. TDMA

I central controlling mechanism
I time divided equally - no collisions, performance
independent of the number of nodes

I guard interval (cyclic pre�x) of 20% slot duration

2. CSMA/CA
I randomised deferment of transmissions in order to avoid
collisions; contention window: 16-1024 symbol intervals

I no symbol intervals wasted on distributed or short
interframe space (DIFS/SIFS), propagation delay, physical
or MAC message headers and ACK responses

I a single message in each transmission queue
I guard interval (cyclic pre�x) of 20% slot duration

randomized deferment time



Comparison to CSMA/CA and TDMA (2)
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Concluding remarks

I a novel decentralized modulation and multiplexing method
for wireless networks

I e�ective time/frequency duplex
I minimal MAC
I inherent robustness to time dispersion

I low computational complexity which takes advantage of

I combinatorial representation of messages
I sparse recovery detection

I signi�cant throughput improvement in comparison to
collision avoidance schemes
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Signalling dictionary

I One construction of on-o� signalling dictionary:

I all columns of Si have equal number of non-zero entries, set
to
⌊
M
L

⌋
I every two columns in Si have disjoint support
I non-zero entries selected uniformly at random from some
discrete constellation

I transmitted codeword xi has exactly l ·
⌊
M
L

⌋
non-zero entries

(on-slots)

I M̃ =M − l ·
⌊
M
L

⌋
o�-slots used to listen to the incoming signals

I Can also use LDPC / regular Gallager constructions (Baron,
Sarvotham, Baraniuk 2010)



Assume: information is a brick

I Brick Bl ⊂ Rl is a hyper-rectangle
Bl := [0, 1]× [12 , 1]× [23 , 1]× · · · × [ l−1l , 1]

I Let l = 2, and L even. Then one can uniquely represent
message indices s ∈ {0, 1, . . . ,K − 1} (where K ≤ L(L−1)

2 )

as integer pairs (b
(s)
1 , b

(s)
2 ), where

0 ≤ α =

⌊
s

L/2

⌋
≤ L− 1

0 ≤ β = s− L

2
α ≤ L

2
− 1

I De�ne b
(s)
1 = α, b

(s)
2 = β + L

2 .

I It follows that

{
(
b
(s)
1
L ,

b
(s)
2
L )

}K−1
s=0

⊂ Bl



Step 1: brick to triangular prism

B3 = B2 × [2/3, 1]→ T2 × [2/3, 1]



Step 2: triangular prism to tetrahedron

I inductive dissection for general w:

1. Bw = Bw−1 × [w−1
w , 1]→ Tw−1 × [w−1

w , 1]
2. Tw−1 × [w−1

w , 1]→ Tw



Step 2: triangular prism to tetrahedron

I inductive dissection for general w:

1. Bw = Bw−1 × [w−1
w , 1]→ Tw−1 × [w−1

w , 1]
2. Tw−1 × [w−1

w , 1]→ Tw

I Some loss in rate due to rounding (when n is in the range
100-1000, and w =

√
n, the loss is 1-2 bits/block)
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