Combinatorial Channel Signature Modulation for Wireless Networks

Dino Sejdinovic (Gatsby Unit, UCL) joint work with Rob Piechocki (CCR, Bristol)

Signal Processing and Communications Laboratory, University of Cambridge

February 8, 2012

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Problem outline

- \blacktriangleright wireless mutual broadcast with $N+1$ half-duplex nodes
- \triangleright each node has a k-bit message to transmit to all others
- \triangleright Can all nodes transmit at the same frequency without elaborate time scheduling?

K ロ > K d > K 글 > K 글 > 「글 …

 2990

Problem outline

- \triangleright wireless mutual broadcast with $N+1$ half-duplex nodes
- \triangleright each node has a k-bit message to transmit to all others
- \triangleright Can all nodes transmit at the same frequency without elaborate time scheduling?

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Introduction

CCSM (Combinatorial Channel Signature Modulation):

- \triangleright sparse, combinatorial representation of messages
- \triangleright compressed sensing based decoding
- \triangleright minimal MAC Layer coordination: access to a shared channel
	- \triangleright no need for collision detection/avoidance scheme (CSMA/CA)

KOR & KERKER ADA KON

- \blacktriangleright robust to time dispersion
	- no need for guard intervals to eliminate ISI

Introduction

CCSM (Combinatorial Channel Signature Modulation):

- \triangleright sparse, combinatorial representation of messages
- \triangleright compressed sensing based decoding
- \triangleright minimal MAC Layer coordination: access to a shared channel
	- no need for collision detection/avoidance scheme (CSMA/CA)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- \blacktriangleright robust to time dispersion
	- no need for guard intervals to eliminate ISI

Introduction

CCSM (Combinatorial Channel Signature Modulation):

- \triangleright sparse, combinatorial representation of messages
- \triangleright compressed sensing based decoding
- \triangleright minimal MAC Layer coordination: access to a shared channel
	- no need for collision detection/avoidance scheme (CSMA/CA)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- \blacktriangleright robust to time dispersion
	- \triangleright no need for guard intervals to eliminate ISI

[CS for multiterminal communications](#page-7-0)

[Combinatorial encoder](#page-14-0)

[Sparse recovery solver](#page-29-0)

[Simulation results](#page-38-0)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ○

Outline

[CS for multiterminal communications](#page-7-0)

[Combinatorial encoder](#page-14-0)

[Sparse recovery solver](#page-29-0)

[Simulation results](#page-38-0)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ○

Compressed sensing

Compressed sensing (Candes, Romberg and Tao 2006; Donoho 2006) combines sampling and compression steps into one - into taking random linear projections.

projections \approx number of non-zeros \times log (size of the vector)

 2990

Compressed sensing

Compressed sensing (Candes, Romberg and Tao 2006; Donoho 2006) combines sampling and compression steps into one - into taking random linear projections.

projections \approx number of non-zeros \times log (size of the vector)

KOD START KED KED BE VAR

Embracing the additive nature of wireless

- \blacktriangleright (Zhang and Guo 2010): each node is assigned a (known) dictionary of (sparse) on-off signalling codewords, each codeword corresponding to a single message
- Own transmissions seen as erasures in dictionary
- \blacktriangleright The dictionary size exponential in the number of bits k in a message - sparse recovery problem of size 2^kN

 QQ

Combinations of the codebook elements?

- **Figure** I Idea: Transmit (weighted) sums of a fixed number l of on-off signalling codewords.
- \blacktriangleright the *choice* of the *l*-combination of the dictionary elements carries information
- \triangleright Requires efficient encoding of messages into *l*-combinations: constant weight coding (l out of L codes)

KOR & KERKER ADA KON

 \blacktriangleright Need $l \ll L$ for sparse recovery

Reduction of complexity

- \blacktriangleright (Zhang and Guo, 2010): $k = \log_2 L$ sparse recovery problem of size 2^kN
- ► CCSM: $k \approx \log_2(\frac{L}{l}) = \mathcal{O}(L^{\alpha} \log_2 L)$, for $l = L^{\alpha}$, $0 < \alpha < 1$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

- sparse recovery problem of size $\sim k^{1/\alpha}N$

Encoder

encoder *i*

· · ·

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『 코 │ ◆ 9 Q ①

[CS for multiterminal communications](#page-7-0)

[Combinatorial encoder](#page-14-0)

[Sparse recovery solver](#page-29-0)

[Simulation results](#page-38-0)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- \triangleright Combinatorial representation of information
- ightharpoonup using l-combinations of the set of L elements, i.e., length-L binary vectors with exactly *l* ones.
	- \blacktriangleright $l \ll L$ (sparse)

Definition

An (L, l) -constant weight code is a set of length-L binary vectors with Hamming weight l:

$$
\mathcal{C} \subseteq \{c \in \mathbb{F}_2^L: w_H(c) = l\}.
$$

- \triangleright single-bit error/single-type error detection
- two-out-of-five barcode

A DIA K RIA K E A K RIA K L DA C

- ► Set of possible messages: $S = \{0, 1, \ldots, K 1\}$. Usually $K = 2^k$, and we identify $S \leftrightarrow \mathbb{F}_2^k$.
- An (L, l) -constant weight code is $C \subseteq \{c \in \mathbb{F}_2^L : w_H(c) = l\}.$
- ► Goal: construct a bijective map ϕ_c : $S \rightarrow C$
- **Enumeration approaches:**
	- \triangleright (Schalkwijk 1972), (Cover 1973): lexicographic ordering of codewords, requires registers of length $\mathcal{O}(L)$.
	- \blacktriangleright (Ramabadran 1990): arithmetic coding, computational complexity $\mathcal{O}(L)$.
	- \blacktriangleright (Knuth 1986): complementation method, computational complexity $\mathcal{O}(L)$ - but much faster in practice. Works only for balanced codes: $l = |L/2|$.
- \blacktriangleright Can we do better when $l \ll L$?
	- \blacktriangleright (Tian, Vaishampayan, Sloane 2009): embed both S and C into \mathbb{R}^l and establish bijective maps by dissecting certain polytopes in \mathbb{R}^l .

- \triangleright Set of possible messages: $S = \{0, 1, \ldots, K 1\}$. Usually $K = 2^k$, and we identify $S \leftrightarrow \mathbb{F}_2^k$.
- An (L, l) -constant weight code is $C \subseteq \{c \in \mathbb{F}_2^L : w_H(c) = l\}.$
- ► Goal: construct a bijective map ϕ_c : $S \rightarrow C$
- **Enumeration approaches:**
	- \triangleright (Schalkwijk 1972), (Cover 1973): lexicographic ordering of codewords, requires registers of length $\mathcal{O}(L)$.
	- \triangleright (Ramabadran 1990): arithmetic coding, computational complexity $\mathcal{O}(L)$.
	- \blacktriangleright (Knuth 1986): complementation method, computational complexity $\mathcal{O}(L)$ - but much faster in practice. Works only for balanced codes: $l = |L/2|$.

\blacktriangleright Can we do better when $l \ll L$?

 \blacktriangleright (Tian, Vaishampayan, Sloane 2009): embed both S and C into \mathbb{R}^l and establish bijective maps by dissecting certain polytopes in \mathbb{R}^l . YO K (FE) (E) ORA

- \triangleright Set of possible messages: $S = \{0, 1, \ldots, K 1\}$. Usually $K = 2^k$, and we identify $S \leftrightarrow \mathbb{F}_2^k$.
- An (L, l) -constant weight code is $C \subseteq \{c \in \mathbb{F}_2^L : w_H(c) = l\}.$
- ► Goal: construct a bijective map ϕ_c : $S \rightarrow C$
- \blacktriangleright Enumeration approaches:
	- \triangleright (Schalkwijk 1972), (Cover 1973): lexicographic ordering of codewords, requires registers of length $\mathcal{O}(L)$.
	- \triangleright (Ramabadran 1990): arithmetic coding, computational complexity $\mathcal{O}(L)$.
	- \blacktriangleright (Knuth 1986): complementation method, computational complexity $\mathcal{O}(L)$ - but much faster in practice. Works only for balanced codes: $l = |L/2|$.
- \blacktriangleright Can we do better when $l \ll L$?
	- \blacktriangleright (Tian, Vaishampayan, Sloane 2009): embed both S and C into \mathbb{R}^l and establish bijective maps by dissecting certain polytopes in \mathbb{R}^l . YO K (FE) (E) ORA

Embedding C into \mathbb{R}^l

- \triangleright Given a constant-weight codeword c, define $\phi(c) = (\frac{y_1}{L}, \dots, \frac{y_l}{L}) \in \mathbb{R}^l$, with $y_i =$ position of the *i*-th 1 in c.
- In for $L = 5$, $l = 2$, $\phi(01010) = (2/5, 4/5)$.
- $\blacktriangleright \phi(\mathcal{C})$ is a discrete subset of the convex hull T_l of the points:

$$
\begin{array}{cccccc}\n(0, & 0, & \dots & 0, & 0) \\
(0, & 0, & \dots & 0, & 1) \\
\vdots & \vdots & \dots & \vdots & \vdots \\
(0, & 1, & \dots & 1, & 1) \\
(1, & 1, & \dots & 1, & 1)\n\end{array}
$$

C embedded in a tetrahedron

- \blacktriangleright T₂ is the right triangle with vertices $(0, 0), (0, 1), (1, 1)$
- \blacktriangleright $Vol(T_l) = \frac{1}{l!}$ (the unit cube can be split into *l*! tetrahedra congruent to T_l)

K □ ▶ K ● K K X B X X B X B X X Q Q Q Q

The case $l = 2$

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Assume: information is a brick

► Brick $B_l \subset \mathbb{R}^l$ is a hyper-rectangle $B_l := [0,1] \times [\frac{1}{2}]$ $\frac{1}{2}, 1] \times [\frac{2}{3}]$ $\frac{2}{3}, 1] \times \cdots \times \left[\frac{l-1}{l}\right]$ $\frac{1}{l}$, 1] **►** Represent messages $s \in \{0, 1, \ldots, K-1\},\$ $K \leq {L \choose l}$ as integer *l*-tuple $(b_1^{(s)}, b_2^{(s)}, \ldots, b_l^{(s)}),$ s.t. $1, o_2, \ldots, o_l$ $(\frac{b_1^{(s)}},\frac{b_2^{(s)}}{n},\ldots,\frac{b_l^{(s)}}{n})\in B_l$: quotient and remainder $(0.1/2)$ $(0,1)$ (1,1) z. 1 $1/2$

$$
\blacktriangleright Vol(B_l) = \frac{1}{l!} = Vol(T_l)
$$

y

x

(1,1/2)

 y_{\bullet}

1/3

Dissections

Hilbert's third problem:

For any two polyhedra of the same volume, is it possible to dissect one into a finite number of pieces that can be rearranged to give the other?

 \blacktriangleright In $l = 2$ dimensions (Bolyai-Gerwien 1833): yes

scissor-equivalence

In $d \geq 3$ dimensions (Dehn, 1902): no - polyhedra must have equal Dehn invariants.

KOR & KERKER ADA KON

Dissections

Hilbert's third problem:

For any two polyhedra of the same volume, is it possible to dissect one into a finite number of pieces that can be rearranged to give the other?

 \blacktriangleright In $l = 2$ dimensions (Bolyai-Gerwien 1833): yes

scissor-equivalence

In $d \geq 3$ dimensions (Dehn, 1902): no - polyhedra must have equal Dehn invariants.**A DIA 4 B A DIA A B A DIA 4 DIA A DIA B**

Encoding

► messages $S = \{0, 1, \ldots, K - 1\} \longleftrightarrow B_l \subset \mathbb{R}^l$ diss. $T_l \subset \mathbb{R}^l$ ←→ \longleftrightarrow constant weight code \mathcal{C}

지수는 지금 아이를 지키는 것이다.

 2990

 \blacktriangleright (Tian, Vaishampayan, Sloane 2009) give an explicit recursive dissection of B_l into T_l computable in $\mathcal{O}(l^2)$

Rate

► CWC rate: $R(C) = \frac{1}{L} \log_2 |C| \leq \frac{1}{L} \log_2 (\frac{L}{l}) = \mathcal{O}(l \frac{\log_2 L}{L}) \to 0,$ $L \to \infty$, when $l \ll L$.

▶ CCSM rate:
$$
\frac{N}{M} \left(\log_2 \left(\frac{L}{l} \right) + lq \right)
$$
, where

 \blacktriangleright M is the time duration of the waveforms (number of rows in the CS problem $+$ number of own transmissions)

A DIA K RIA K E A K RIA K L DA C

 \blacktriangleright Typical CS results: it suffices to take M to be the number of non-zeros \times log (size of the vector)

 $M = \mathcal{O}(l N \log_2(LN)) \Rightarrow CCSM \ rate = \mathcal{O}(\frac{\log_2 L}{\log_2 L + \log_2 L})$ $\frac{\log_2 L}{\log_2 L + \log_2 N}$

Rate

► CWC rate: $R(C) = \frac{1}{L} \log_2 |C| \leq \frac{1}{L} \log_2 (\frac{L}{l}) = \mathcal{O}(l \frac{\log_2 L}{L}) \to 0,$ $L \to \infty$, when $l \ll L$.

 $CCSM$ rate \neq CWC rate

• CCSM rate:
$$
\frac{N}{M} \left(\log_2 \left(\frac{L}{l} \right) + lq \right)
$$
, where

 $\blacktriangleright M$ is the time duration of the waveforms (number of rows in the CS problem $+$ number of own transmissions)

A DIA K RIA K E A K RIA K L DA C

 \blacktriangleright Typical CS results: it suffices to take M to be the number of non-zeros \times log (size of the vector)

 $M = \mathcal{O}(l N \log_2(LN)) \Rightarrow CCSM \ rate = \mathcal{O}(\frac{\log_2 L}{\log_2 L + \log_2 L})$ $\frac{\log_2 L}{\log_2 L + \log_2 N}$

Rate

► CWC rate: $R(C) = \frac{1}{L} \log_2 |C| \leq \frac{1}{L} \log_2 (\frac{L}{l}) = \mathcal{O}(l \frac{\log_2 L}{L}) \to 0,$ $L \to \infty$, when $l \ll L$.

 $CCSM$ rate \neq CWC rate

• CCSM rate:
$$
\frac{N}{M} \left(\log_2 \left(\frac{L}{l} \right) + lq \right)
$$
, where

 $\blacktriangleright M$ is the time duration of the waveforms (number of rows in the CS problem $+$ number of own transmissions)

KOR & KERKER ADA KON

 \blacktriangleright Typical CS results: it suffices to take M to be the number of non-zeros \times log (size of the vector)

$$
\blacktriangleright M = \mathcal{O}(lN \log_2(LN)) \Rightarrow CCSM \ rate = \mathcal{O}(\frac{\log_2 L}{\log_2 L + \log_2 N})
$$

[CS for multiterminal communications](#page-7-0)

[Combinatorial encoder](#page-14-0)

[Sparse recovery solver](#page-29-0)

[Simulation results](#page-38-0)

Channel signatures

 \triangleright Each user convolves codebook elements with the channel impulse response

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

 \triangleright Can subtract echoes of its own transmissions (self-interference remover)

Decoder

$$
\mathbf{x}_{i} = \mathbf{S}_{i}\mathbf{c}_{i}
$$
\n
$$
\mathbf{y}_{i} = \mathbf{E}_{i} \left(\sum_{j=0}^{N} \mathbf{h}_{i,j} * \mathbf{S}_{j} \mathbf{c}_{j} + \tilde{\mathbf{z}}_{i} \right) - \mathbf{E}_{i} \left(\mathbf{h}_{i,i} * \mathbf{S}_{i} \mathbf{c}_{i} \right) = \mathbf{A}_{-i} \mathbf{v}_{-i} + \mathbf{z}_{i}
$$

$$
\mathbf{y}_{i}=\mathbf{E}_{i}\left(\sum_{j=0}^{N}\mathbf{h}_{i,j}*\mathbf{S}_{j}\mathbf{c}_{j}+\mathbf{\tilde{z}}_{i}\right)-\mathbf{E}_{i}\left(\mathbf{h}_{i,i}*\mathbf{S}_{i}\mathbf{c}_{i}\right)=\mathbf{A}_{-i}\mathbf{v}_{-i}+\mathbf{z}_{i}
$$

 \triangleright User *i* needs to solve the following problem to detect the desired signal:

$$
\hat{\mathbf{v}}_{-i} = \arg \min_{\mathbf{v}_{-i}} ||\mathbf{y}_i - \mathbf{A}_{-i} \mathbf{v}_{-i}||_2
$$

s.t. $||\mathbf{c}_j||_0 = l$, for all $j \neq i$,

- \blacktriangleright A non-convex optimisation problem.
- Exactly Nl out of NL entries in \mathbf{v}_{-i} are non-zero but sparsity level is: $\frac{l}{L} \ll 1$
- \triangleright Can use any of the myriad of CS decoding algorithms.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\mathbf{y}_{i}=\mathbf{E}_{i}\left(\sum_{j=0}^{N}\mathbf{h}_{i,j}*\mathbf{S}_{j}\mathbf{c}_{j}+\mathbf{\tilde{z}}_{i}\right)-\mathbf{E}_{i}\left(\mathbf{h}_{i,i}*\mathbf{S}_{i}\mathbf{c}_{i}\right)=\mathbf{A}_{-i}\mathbf{v}_{-i}+\mathbf{z}_{i}
$$

 \triangleright User *i* needs to solve the following problem to detect the desired signal:

$$
\hat{\mathbf{v}}_{-i} = \arg\min_{\mathbf{v}_{-i}} \|\mathbf{y}_i - \mathbf{A}_{-i}\mathbf{v}_{-i}\|_2
$$

s.t. $\|\mathbf{c}_j\|_0 = l$, for all $j \neq i$,

- \blacktriangleright A non-convex optimisation problem.
- Exactly Nl out of NL entries in \mathbf{v}_{-i} are non-zero but sparsity level is: $\frac{l}{L} \ll 1$
- \triangleright Can use any of the myriad of CS decoding algorithms.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\mathbf{y}_{i}=\mathbf{E}_{i}\left(\sum_{j=0}^{N}\mathbf{h}_{i,j}*\mathbf{S}_{j}\mathbf{c}_{j}+\mathbf{\tilde{z}}_{i}\right)-\mathbf{E}_{i}\left(\mathbf{h}_{i,i}*\mathbf{S}_{i}\mathbf{c}_{i}\right)=\mathbf{A}_{-i}\mathbf{v}_{-i}+\mathbf{z}_{i}
$$

 \triangleright User *i* needs to solve the following problem to detect the desired signal:

$$
\hat{\mathbf{v}}_{-i} = \arg \min_{\mathbf{v}_{-i}} ||\mathbf{y}_i - \mathbf{A}_{-i} \mathbf{v}_{-i}||_2
$$

s.t. $||\mathbf{c}_j||_0 = l$, for all $j \neq i$,

- \blacktriangleright A non-convex optimisation problem.
- ► Exactly Nl out of NL entries in \mathbf{v}_{-i} are non-zero but sparsity level is: $\frac{l}{L} \ll 1$
- \triangleright Can use any of the myriad of CS decoding algorithms.

- \triangleright Basis Pursuit/LASSO/convex relaxation (Tibshirani 1996), (Chen, Donoho, and Saunders 1998)
- \blacktriangleright LARS / homotopy (Efron et al, 2004)
- \blacktriangleright Greedy iterative methods:
	- Compressive Sampling Matching Pursuit CoSaMP (Needell and Tropp 2009)

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

► Subspace Pursuit - SP (Dai and Milenkovic 2009)

Subspace Pursuit

Greedily searches for the support set S such that y is closest to $span(A_{\cal S})$.

- 1. Initialise. Set S to the Nl columns that maximize $|\langle a_i, y \rangle|$
- 2. Identify further candidates. Set \mathcal{S}' to the Nl columns that maximize $|\langle a_i, y - proj(y, span(A_{\mathcal{S}}))|$
- 3. Merge and Prune. Set S to the Nl columns from $S \cup S'$ with largest magnitudes in $A^+_{\mathcal{S}\cup\mathcal{S}'}y$
- 4. Iterate (2)-(3) until the stopping criterion holds.

Group Subspace Pursuit

Sparse vector has additional structure: each of N subvectors has exactly l non-zero entries.

- 1. Initialise. Set S to the union of sets of l columns within each group of L that maximize $|\langle a_i, y \rangle|$
- 2. Identify further candidates. Set \mathcal{S}' to the union of sets of l columns within each group of L that maximize $|\langle a_i, y - proj(y, span(A_{\mathcal{S}}))|$
- 3. Merge and Prune. Set S to the union of sets of l columns within each group of L with largest magnitudes in $A^+_{\mathcal{S}\cup\mathcal{S}'}y$

4. Iterate (2)-(3) until the stopping criterion holds.

[CS for multiterminal communications](#page-7-0)

[Combinatorial encoder](#page-14-0)

[Sparse recovery solver](#page-29-0)

[Simulation results](#page-38-0)

Group Subspace Pursuit (2)

Figure: Performance comparison of Basis Pursuit/Lasso (BP), Group Basis Pursuit (GBP) and Group Subspace Pursuit (GSP). $N = 10$, $l = 4, L = 32$

イロト イ部 トメ ミト メモト \equiv 299

CCSM Performance

Figure: Performance of the proposed method in terms of message error rate: In this case there are $(N + 1) = 5$ users simultaneously broadcasting messages using CCSM with $L = 64$, $l = 12$.

Comparison to CSMA/CA and TDMA (1)

- 1. TDMA
	- \triangleright central controlling mechanism
	- \rightarrow time divided equally no collisions, performance independent of the number of nodes
	- \triangleright guard interval (cyclic prefix) of 20% slot duration
- 2. CSMA/CA
	- \triangleright randomised deferment of transmissions in order to avoid collisions; contention window: 16-1024 symbol intervals
	- \triangleright no symbol intervals wasted on distributed or short interframe space (DIFS/SIFS), propagation delay, physical or MAC message headers and ACK responses
	- \triangleright a single message in each transmission queue
	- \triangleright guard interval (cyclic prefix) of 20% slot duration

Comparison to CSMA/CA and TDMA (2)

CCSM: the minimum number of symbol intervals at which no message errors occurred in at least 100,000 simulation trials

$$
L = 64, l = 12, q = 2 \text{ (QPSK)}
$$
\n
$$
k = \left\lfloor \log_2 \left(\frac{L}{l}\right) \right\rfloor + lq = 65
$$

Concluding remarks

- \triangleright a novel decentralized modulation and multiplexing method for wireless networks
	- \blacktriangleright effective time/frequency duplex
	- \blacktriangleright minimal MAC
	- \triangleright inherent robustness to time dispersion
- \triangleright low computational complexity which takes advantage of
	- \triangleright combinatorial representation of messages
	- \blacktriangleright sparse recovery detection
- \triangleright significant throughput improvement in comparison to collision avoidance schemes

KOR & KERKER ADA KON

Concluding remarks

- \triangleright a novel decentralized modulation and multiplexing method for wireless networks
	- \blacktriangleright effective time/frequency duplex
	- \blacktriangleright minimal MAC
	- \triangleright inherent robustness to time dispersion
- \triangleright low computational complexity which takes advantage of
	- \triangleright combinatorial representation of messages
	- \blacktriangleright sparse recovery detection
- \triangleright significant throughput improvement in comparison to collision avoidance schemes

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Concluding remarks

- \triangleright a novel decentralized modulation and multiplexing method for wireless networks
	- \blacktriangleright effective time/frequency duplex
	- \blacktriangleright minimal MAC
	- \triangleright inherent robustness to time dispersion
- \triangleright low computational complexity which takes advantage of
	- \triangleright combinatorial representation of messages
	- \blacktriangleright sparse recovery detection
- \triangleright significant throughput improvement in comparison to collision avoidance schemes

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

References

晶

R. Piechocki and D. Sejdinovic, "Combinatorial Channel Signature Modulation for Wireless ad-hoc Networks" preprint available from: arxiv.org/abs/1201.5608v1 (to appear in *Proc. IEEE Int. Conf. on* Communications ICC 2012).

L. Zhang and D. Guo, Wireless Peer-to-Peer Mutual Broadcast via Sparse Recovery" preprint available from: $arxiv.org/abs/1101.0294$, in Proc. IEEE Int. Symp. Inform. Theory ISIT 2011.

W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inform. Theory, vol. 55, pp. $2230 - 2249$, 2009 .

C. Tian, V. Vaishampayan and N. J. A. Sloane, "A coding algorithm for constant weight vectors: a geometric approach based on dissections," IEEE Trans. Inform. Theory, vol. 55, pp. $1051-1060$, 2009.

G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function". IEEE Journal on Selected Areas in $Communications$, vol. 18, pp. 535-547, 2000.

Signalling dictionary

 \triangleright One construction of on-off signalling dictionary:

- \triangleright all columns of S_i have equal number of non-zero entries, set to $\left\lfloor \frac{M}{L} \right\rfloor$
- \triangleright every two columns in S_i have disjoint support
- non-zero entries selected uniformly at random from some discrete constellation
- If transmitted codeword \mathbf{x}_i has exactly $l \cdot \left\lfloor \frac{M}{L} \right\rfloor$ non-zero entries (on-slots)
- $\tilde{M} = M l \cdot \left\lfloor \frac{M}{L} \right\rfloor$ off-slots used to listen to the incoming signals

A DIA K A B A B A B A A A A A B A A A A A A

• Can also use LDPC / regular Gallager constructions (Baron, Sarvotham, Baraniuk 2010)

Assume: information is a brick

▶ Brick
$$
B_l \subset \mathbb{R}^l
$$
 is a hyper-rectangle
 $B_l := [0, 1] \times [\frac{1}{2}, 1] \times [\frac{2}{3}, 1] \times \cdots \times [\frac{l-1}{l}, 1]$

In Let $l = 2$, and L even. Then one can uniquely represent message indices $s \in \{0, 1, \ldots, K - 1\}$ (where $K \leq \frac{L(L-1)}{2}$) as integer pairs $(b_1^{(s)}$ $_1^{(s)}, b_2^{(s)}),$ where

$$
0 \le \alpha = \left\lfloor \frac{s}{L/2} \right\rfloor \le L - 1
$$

$$
0 \le \beta = s - \frac{L}{2}\alpha \le \frac{L}{2} - 1
$$

\n- Define
$$
b_1^{(s)} = \alpha
$$
, $b_2^{(s)} = \beta + \frac{L}{2}$.
\n- It follows that $\left\{ (\frac{b_1^{(s)}}{L}, \frac{b_2^{(s)}}{L}) \right\}_{s=0}^{K-1} \subset B_l$.
\n

Step 1: brick to triangular prism

 $B_3 = B_2 \times [2/3, 1] \rightarrow T_2 \times [2/3, 1]$

イロト イ御 トイミト イミト ニミー のんぴ

Step 2: triangular prism to tetrahedron

inductive dissection for general w :

1.
$$
B_w = B_{w-1} \times \left[\frac{w-1}{w}, 1\right] \to T_{w-1} \times \left[\frac{w-1}{w}, 1\right]
$$

2. $T_{w-1} \times \left[\frac{w-1}{w}, 1\right] \to T_w$

メロト メタト メミト メミト 一毛

 2990

Step 2: triangular prism to tetrahedron

inductive dissection for general w.

1.
$$
B_w = B_{w-1} \times \left[\frac{w-1}{w}, 1\right] \to T_{w-1} \times \left[\frac{w-1}{w}, 1\right]
$$

2. $T_{w-1} \times \left[\frac{w-1}{w}, 1\right] \to T_w$

Some loss in rate due to rounding (when *n* is in the range 100-1000, and $w = \sqrt{n}$, the loss is 1-2 bits/block)