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Data sources

Consider observing a �nite-alphabet source of data with a
change-point, i.e., at an unknown time the statistical
properties of the source change.

We do not know statistical properties of source and do not
want to assume particular parametric family of distributions.

However, we need to make inference about it.
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Change-point detection

Parametric framework:

postulate a parametric
family model: data
comes from a model with
some parameters θ

detect changes in these
parameters, e.g., in mean
and variance of normal
samples

can use maximum
likelihood principle

[Horvath, 1993]

Non-parametric framework:

monitoring changes in
the empirical mean

comparing empirical
distribution before and
after a putative
changepoint

[Brodsky, Darkhovsky, 1993]
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Detecting change in entropy?

0/1: We could estimate long-term density of heads by
counting, but we might also want to know `how random' it is.

Randomness is expressed through the entropy of source.

Example

Consider two binary sequences:

1 x : 01010101010101010110

2 y : 00101101011000101011

Both x and y have 10 0's and 10 1's.

However, �rst has a long periodic substring, the second seems
random.
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Detecting change in entropy? (2)

How can we detect a change-point when the source switches
from a boring to an interesting state or vice-versa?

Similar examples can be constructed on which the crude
bigram and trigram strategies fail.

Need a systematic way to take into account all features.
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Match lengths

De�nition

Given sequence (x0, . . . , xn−1) of length n, write
x i+L−1i = (xi , . . . , xi+L−1) for substring of length L starting at i .
For each i , the match length at i is given by:

Lni (x) = min{L : x i+L−1i 6= x j+L−1j for all i 6= j}.

Lni is the length of a shortest unique pre�x starting at i .
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Substring matches

Example

Consider two binary sequences:

1 x : 01010101010101010110

2 y : 00101101011000101011

Substring x150 : 0101010101010101 (length 16) seen again at
x172 : L200 (x) = 17.

Substring y40 : 00101 (length 5) seen again at y1612 , but nothing
longer: L200 (y) = 6.

�More random� sources explore bigger set of substrings and
have shorter repeats than simpler ones.

How large do we expect Lni to be as n grows?
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Asymptotic equipartition

Theorem

[Shannon-MacMillan-Breiman] Given stationary source of entropy
H, there exists a `typical set' T of strings of length m such that:

1 A random string lies in T with probability ≥ 1− ε.
2 Any individual string in T has probability ∼ 2−mH .

Heuristically, we can predict the size of match lengths as follows:

If string length m at point i is typical, it has probability
∼ 2−mH , so we expect to see it ∼ n2−mH times.

Hence by choosing m = log n
H

, expect to see it once:

Lni ∼
log n

H
.
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Estimating entropy with match lengths

Theorem

[Shields 1992, Shields 1997] If match lengths Lni are calculated for
an IID or mixing Markov source with entropy H,

lim
n→∞

∑n
i=1 L

n
i

n log n
=

1

H
, (a.s.).

[Kontoyiannis and Suhov 1993] extends the convergence for a
broad class of stationary sources.

Non-parametric, computationally e�cient entropy estimators
with fast convergence in n (they out-perform plug-in
estimators).
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Source model with a changepoint

De�nition

Sample two independent sequences x(1), x(2), where x(i) ∼ µi for
a stationary process µi with i = 1, 2. Then, given length and
change point parameters n and γ, de�ne the concatenated process
x by:

xi =

{
x(1)i if 0 ≤ i ≤ nγ − 1,
x(2)i if nγ ≤ i ≤ n − 1.

Given x , we hope to detect the change point � that is, to
estimate the true value of γ.
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Match locations

Consider match locations � for each i , write T n
i for a position

of longest substring that agrees with i .

Example

Consider two binary sequences:

1 x : 01010101010101010110

2 y : 00101101011000101011

Substring x150 : 0101010101010101 (length 16) seen again at
x172 : T 20

0 (x) = 2.

Substring y40 : 00101 (length 5) seen again at y1612 :
T 20
0 (y) = 12.

T n
i need not be unique: in the event of a tie, choose random

one.
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Using match locations to detect change points

Idea: substrings of x(1) likely to be similar to other substrings
of x(1).

The same is true for x(2).

Expect that if i < nγ then T n
i will tend to be < nγ.

Similarly, for i ≥ nγ, expect T n
i will tend to be ≥ nγ.
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Grassberger tree of shortest pre�xes
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Grassberger Tree is a
q-ary labelled tree Tn(x)
which encodes the
shortest unique pre�xes
of each substring

the set of all matches of
substring at i ≡ the set
of leaves in a subtree
rooted at a parent of i
(excluding i)
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Grassberger tree of shortest pre�xes
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We choose a match
location T n

i to be an
element from the set of
all matches chosen
uniformly at random.
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Counting crossings

0 1 2 3 4 5 6 7 8 9 10 11

Figure: Directed graph formed by linking i to T
n

i
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Counting crossings (2)

De�nition

Given a putative change point 0 ≤ j ≤ n − 1, we write

CLR(j) = #{k : k < j ≤ T n
k } for the number of left-right

crossings of j ,

CRL(j) = #{k : T n
k < j ≤ k} for the number of right-left

crossings of j .
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Counting crossings (3)

0 1 2 3 4 5 6 7 8 9 10 11

CLR(2) = 2, CRL(2) = 3.

Intuitively, we look for index j such that both CLR(j) and
CRL(j) are small.

However, CLR(j) and CRL(j) will be highest around the middle
of the sequence. Normalization?
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CRossings Enumeration CHange Estimator: CRECHE

De�nition

For 0 ≤ j ≤ n − 1, de�ne the normalized crossing processes:

ψLR(j) =
CLR(j)

n − j
− j

n
and ψRL(j) =

CRL(j)

j
− n − j

n
,

and
ψ(j) = max(ψLR(j), ψRL(j)).

CRECHE estimator of γ is given by γ̂ = 1
n
argmin0≤j≤n−1 ψ(j).

The processes ψLR(j) and ψRL(j) are designed via subtracting
o� the mean of CLR(j) and CRL(j)

Related to the conductance of the directed graph
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Results for IID sources � no change point
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Results for IID sources � with change-point

0 1 2 3 4 5

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

j

ψ
(j)

10,000 symbols with distribution (0.1,0.3,0.6) vs.
40,000 symbols with distribution (0.5,0.25,0.25)



Match lengths and entropy Using match locations to detect change-points Simulation results Consistency

IID vs. Markov

0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

location of argmin ψ(j) / n

fr
eq

ue
nc

y

γ

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

location of argmin ψ(j) / n
fr

eq
ue

nc
y

γ

Markov chain with a stationary distribution (0.3, 0.4, 0.3) vs.
IID with distribution (0.3, 0.4, 0.3): (1) γ = 1/3, (2) γ = 2/3.
Plot based on 1000 trials



Match lengths and entropy Using match locations to detect change-points Simulation results Consistency

IID vs. Markov (2)
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Results for text �les � German vs. English
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Results for text �les � di�erent English authors
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Audio: speaker turn detection
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Analysis of a related toy problem

Would like to theoretically analyse performance of estimator γ̂
for this source and matching model.

To show ψ is minimised close to change point nγ, we need
uniform control of ψLR and ψRL.

However, dependencies make analysis tricky.

Match locations tend to be roughly independent and uniform,
so we analyse related toy source model instead.
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Simple toy problem

For each i ∈ {0, 1, . . . , n − 1}, de�ne T n
i to be independently

uniformly distributed on {0, 1, . . . , n − 1}.
For each j = 1, . . . , n − 1, as before de�ne

CLR(j) = # {k : k ≤ j < T n
k }

for the number of LR crossings of j . Denote ψLR and ψRL as
before.
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Simple toy problem: con�dence region

Theorem

Let T n
i be independently uniformly distributed on

{0, 1, . . . , n − 1}.For any 0 ≤ δ ≤ 1 and s > 0,

P

(
sup

1≤j≤n(1−δ)
|ψLR(j)| ≥

s√
n

)
≤ (1− δ)2

δs2
.

Proof Sketch:

We characterize the distribution of the crossing process CLR
using Rényi's thinning operation.

This allows us to show that ψLR is a martingale.

Doob's submartingale inequality allows us to uniformly bound
the �uctuations of ψLR , as required.



Match lengths and entropy Using match locations to detect change-points Simulation results Consistency

Toy problem vs. simulation results
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Toy problem with a changepoint

n

L )1( 

R 1


T n
i generated

independently, following
a mixture of uniform
distributions

Toy model: For a change location γ, and parameters
αL, αR ∈ [0, 1], de�ne independent random variables T n

i such that:

1 for each 0 ≤ i ≤ nγ − 1,

P(T n
i = j) ∝

{
1, 0 ≤ j ≤ nγ − 1,
αL, nγ ≤ j ≤ n − 1.

2 for each nγ ≤ i ≤ n − 1,

P(T n
i = j) ∝

{
αR , 0 ≤ j ≤ nγ − 1,
1, nγ ≤ j ≤ n − 1.
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Toy problem with a changepoint (2)

ψLR is close to its deteministic mean function:

ψLR(j) '

{
− C0j

2

n(n−j) for j ≤ nγ,

C1
j
n
− C2 for j ≥ nγ,

for certain explicit constants C0, C1, C2, depending on αL, αR and
γ.
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Fluctuations from the mean
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Toy problem vs. simulation results

0 1 2 3 4 5

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

j

ψ
(j)

quadratic component
of ψ

RL
quadratic component

of ψ
LR

linear component
of ψ

LR

Form of mean functions
explain form of curves
seen in change-point
graphs



Match lengths and entropy Using match locations to detect change-points Simulation results Consistency

√
n- Consistency

Theorem

The estimator γ̂ is
√
n-consistent: there exists a constant K,

depending on αL, αR and γ, such that for all s:

P
(
|γ̂ − γ| ≥ s√

n

)
≤ K

s2
.

Proof sketch:

Use the insights from the no-changepoint case - scaled version
of the crossings process minus the deterministic part is a
martingale.

The proof follows from Doob's submartingale inequality and
the union bound.
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Conclusions

A new fully non-parametric, model-free change-point
estimator, based on ideas from information theory

Promising performance for a variety of data sources
√
n- consistency in a related toy problem

Multiple change-points? Streaming?
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