Non-parametric change-point detection via string matching

Dino Sejdinovic

School of Mathematics University of Bristol

Joint work with: Oliver Johnson, Ayalvadi Ganesh (Bristol Maths), James Cruise (Heriot Watt), Robert Piechocki (Bristol CCR)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

2 Using match locations to detect change-points

3 Simulation results

Data sources

- Consider observing a finite-alphabet source of data with a change-point, i.e., at an unknown time the statistical properties of the source change.
- We do not know statistical properties of source and do not want to assume particular parametric family of distributions.

ション ふゆ く は マ く ほ マ く し マ

• However, we need to make inference about it.

Change-point detection

Parametric framework:

- postulate a parametric family model: data comes from a model with some parameters θ
- detect changes in these parameters, e.g., in mean and variance of normal samples
- can use maximum likelihood principle

[Horvath, 1993]

Non-parametric framework:

- monitoring changes in the empirical mean
- comparing empirical distribution before and after a putative changepoint

[Brodsky, Darkhovsky, 1993]

◆□▶ ◆圖▶ ★ 副▶ ★ 副▶ 三国 - のへで

Detecting change in entropy?

- 0/1: We could estimate long-term density of heads by counting, but we might also want to know 'how random' it is.
- Randomness is expressed through the entropy of source.

Example

Consider two binary sequences:

- x: 010101010101010101010
- 2 y: 001011010100101011
 - Both x and y have 10 0's and 10 1's.
 - However, first has a long periodic substring, the second seems random.

Detecting change in entropy? (2)

• How can we detect a change-point when the source switches from a boring to an interesting state or vice-versa?

ション ふゆ く は マ く ほ マ く し マ

- Similar examples can be constructed on which the crude bigram and trigram strategies fail.
- Need a systematic way to take into account all features.

Match lengths

Definition

Given sequence (x_0, \ldots, x_{n-1}) of length n, write $x_i^{i+L-1} = (x_i, \ldots, x_{i+L-1})$ for substring of length L starting at i. For each i, the match length at i is given by:

$$L_i^n(x) = \min\{L : x_i^{i+L-1} \neq x_j^{j+L-1} \text{ for all } i \neq j\}.$$

ション ふゆ く は マ く ほ マ く し マ

• L_i^n is the length of a shortest unique prefix starting at *i*.

Substring matches

Example

Consider two binary sequences:

- x: 01<u>0101010101010101</u>10
- 2 y: 00101101011000101011
 - Substring x_0^{15} : 0101010101010101 (length 16) seen again at x_2^{17} : $L_0^{20}(x) = 17$.
 - Substring y_0^4 : 00101 (length 5) seen again at y_{12}^{16} , but nothing longer: $L_0^{20}(y) = 6$.
 - "More random" sources explore bigger set of substrings and have shorter repeats than simpler ones.
 - How large do we expect L_i^n to be as *n* grows?

Asymptotic equipartition

Theorem

[Shannon-MacMillan-Breiman] Given stationary source of entropy H, there exists a 'typical set' T of strings of length m such that:

- **4** A random string lies in \mathcal{T} with probability $\geq 1 \epsilon$.
- **2** Any individual string in \mathcal{T} has probability $\sim 2^{-mH}$.

Heuristically, we can predict the size of match lengths as follows:

- If string length *m* at point *i* is typical, it has probability $\sim 2^{-mH}$, so we expect to see it $\sim n2^{-mH}$ times.
- Hence by choosing $m = \frac{\log n}{H}$, expect to see it once:

$$L_i^n \sim \frac{\log n}{H}.$$

Estimating entropy with match lengths

Theorem

[Shields 1992, Shields 1997] If match lengths L_i^n are calculated for an IID or mixing Markov source with entropy H,

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n L_i^n}{n\log n} = \frac{1}{H}, \ (a.s.).$$

- [Kontoyiannis and Suhov 1993] extends the convergence for a broad class of stationary sources.
- Non-parametric, computationally efficient entropy estimators with fast convergence in n (they out-perform plug-in estimators).

Source model with a changepoint

Definition

Sample two independent sequences x(1), x(2), where $x(i) \sim \mu_i$ for a stationary process μ_i with i = 1, 2. Then, given length and change point parameters n and γ , define the concatenated process x by:

$$x_i = \begin{cases} x(1)_i & \text{if } 0 \le i \le n\gamma - 1, \\ x(2)_i & \text{if } n\gamma \le i \le n - 1. \end{cases}$$

 Given x, we hope to detect the change point – that is, to estimate the true value of γ.

ション ふゆ く は マ く ほ マ く し マ

Match locations

 Consider match locations – for each *i*, write Tⁿ_i for *a* position of longest substring that agrees with *i*.

Example

Consider two binary sequences:

- x: 01<u>0101010101010101</u>10
- **2** *y*: 001011010110<u>00101</u>011
 - Substring x_0^{15} : 0101010101010101 (length 16) seen again at x_2^{17} : $T_0^{20}(x) = 2$.
 - Substring y_0^4 : 00101 (length 5) seen again at y_{12}^{16} : $T_0^{20}(y) = 12$.
 - Tⁿ_i need not be unique: in the event of a tie, choose random one.

Using match locations to detect change points

 Idea: substrings of x(1) likely to be similar to other substrings of x(1).

ション ふゆ アメリア メリア しょうくの

- The same is true for x(2).
- Expect that if $i < n\gamma$ then T_i^n will tend to be $< n\gamma$.
- Similarly, for $i \ge n\gamma$, expect T_i^n will tend to be $\ge n\gamma$.

Grassberger tree of shortest prefixes

- Grassberger Tree is a q-ary labelled tree T_n(x) which encodes the shortest unique prefixes of each substring
- the set of all matches of substring at i ≡ the set of leaves in a subtree rooted at a parent of i (excluding i)

(日) (四) (日) (日)

Grassberger tree of shortest prefixes

 We choose a match location T_iⁿ to be an element from the set of all matches chosen uniformly at random.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Counting crossings

Figure: Directed graph formed by linking *i* to T_i^n

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Counting crossings (2)

Definition

Given a putative change point $0 \le j \le n-1$, we write

- C_{LR}(j) = #{k : k < j ≤ Tⁿ_k} for the number of left-right crossings of j,
- C_{RL}(j) = #{k : Tⁿ_k < j ≤ k} for the number of right-left crossings of j.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Counting crossings (3)

- $C_{LR}(2) = 2$, $C_{RL}(2) = 3$.
- Intuitively, we look for index j such that both $C_{LR}(j)$ and $C_{RL}(j)$ are small.
- However, $C_{LR}(j)$ and $C_{RL}(j)$ will be highest around the middle of the sequence. Normalization?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CRossings Enumeration CHange Estimator: CRECHE

Definition

For $0 \leq j \leq n-1$, define the normalized crossing processes:

$$\psi_{LR}(j) = rac{\mathcal{C}_{LR}(j)}{n-j} - rac{j}{n}$$
 and $\psi_{RL}(j) = rac{\mathcal{C}_{RL}(j)}{j} - rac{n-j}{n}$

and

$$\psi(j) = \max(\psi_{LR}(j), \psi_{RL}(j)).$$

CRECHE estimator of γ is given by $\hat{\gamma} = \frac{1}{n} \arg\min_{0 \le j \le n-1} \psi(j)$.

 The processes ψ_{LR}(j) and ψ_{RL}(j) are designed via subtracting off the mean of C_{LR}(j) and C_{RL}(j)

ション ふゆ アメリア メリア しょうくの

• Related to the conductance of the directed graph

Results for IID sources - no change point

э

• 50,000 symbols with distribution (0.5,0.25,0.25)

Results for IID sources - with change-point

10,000 symbols with distribution (0.1,0.3,0.6) vs.
 40,000 symbols with distribution (0.5,0.25,0.25)

IID vs. Markov

• Markov chain with a stationary distribution (0.3, 0.4, 0.3) vs. IID with distribution (0.3, 0.4, 0.3): (1) $\gamma = 1/3$, (2) $\gamma = 2/3$. Plot based on 1000 trials

(日) (四) (日) (日)

IID vs. Markov (2)

• Markov chain with a stationary distribution (0.3, 0.4, 0.3) vs. IID with distribution (0.3, 0.4, 0.3): (3) $\gamma = 1/2$, (4) empirical average of ψ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Э

Results for text files – German vs. English

• Excerpts from German original and English translation of Goethe's Faust

Results for text files - different English authors

Excerpts from English text by two different authors

Audio: speaker turn detection

Original Speaker 1 Speaker 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Analysis of a related toy problem

- Would like to theoretically analyse performance of estimator $\hat{\gamma}$ for this source and matching model.
- To show ψ is minimised close to change point $n\gamma$, we need uniform control of ψ_{LR} and ψ_{RL} .
- However, dependencies make analysis tricky.
- Match locations tend to be roughly independent and uniform, so we analyse related toy source model instead.

ション ふゆ アメリア メリア しょうくの

Simple toy problem

For each $i \in \{0, 1, ..., n-1\}$, define T_i^n to be independently uniformly distributed on $\{0, 1, ..., n-1\}$.

• For each $j=1,\ldots,n-1$, as before define

$$C_{LR}(j) = \# \{k : k \le j < T_k^n\}$$

for the number of LR crossings of j. Denote ψ_{LR} and ψ_{RL} as before.

ション ふゆ アメリア メリア しょうくの

Simple toy problem: confidence region

Theorem

Let T_i^n be independently uniformly distributed on {0,1,...,n-1}. For any $0 \le \delta \le 1$ and s > 0, $\mathbb{P}\left(\sup_{1\le j\le n(1-\delta)} |\psi_{LR}(j)| \ge \frac{s}{\sqrt{n}}\right) \le \frac{(1-\delta)^2}{\delta s^2}.$

Proof Sketch:

- We characterize the distribution of the crossing process C_{LR} using Rényi's thinning operation.
- This allows us to show that ψ_{LR} is a martingale.
- Doob's submartingale inequality allows us to uniformly bound the fluctuations of $\psi_{LR},$ as required.

Toy problem vs. simulation results

- Form of bound on ψ_{LR} explains high values seen at RH end of the 'no change point' curve.
- By symmetry, form of bound on ψ_{RL} explains high values on LH end.
- Considering the maximum of ψ_{LR} and ψ_{RL} ensures that the curve is close to zero in the middle: maximal fluctuations are of the order $O(\frac{1}{\sqrt{n}})$.

・ロト ・聞 ・ ・目 ・ ・目 ・ うへぐ

Toy problem with a changepoint

T_iⁿ generated independently, following a mixture of uniform distributions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Toy model: For a change location γ , and parameters $\alpha_L, \alpha_R \in [0, 1]$, define independent random variables \mathcal{T}_i^n such that:

• for each
$$0 \le i \le n\gamma - 1$$
,
 $\mathbb{P}(T_i^n = j) \propto \begin{cases} 1, & 0 \le j \le n\gamma - 1, \\ \alpha_L, & n\gamma \le j \le n - 1. \end{cases}$
• for each $n\gamma \le i \le n - 1,$
 $\mathbb{P}(T_i^n = j) \propto \begin{cases} \alpha_R, & 0 \le j \le n\gamma - 1, \\ 1, & n\gamma \le i \le n - 1 \end{cases}$

Toy problem with a changepoint (2)

 ψ_{LR} is close to its deteministic mean function:

$$\psi_{LR}(j) \simeq \begin{cases} -\frac{C_0 j^2}{n(n-j)} & \text{for } j \le n\gamma, \\ C_1 \frac{j}{n} - C_2 & \text{for } j \ge n\gamma, \end{cases}$$

for certain explicit constants C_0 , C_1 , C_2 , depending on α_L , α_R and γ .

ション ふゆ アメリア メリア しょうくの

Fluctuations from the mean

200

Toy problem vs. simulation results

 Form of mean functions explain form of curves seen in change-point graphs

イロト 不得下 不良下 不良下

Э

√*n*- Consistency

Theorem

The estimator $\hat{\gamma}$ is \sqrt{n} -consistent: there exists a constant K, depending on α_L , α_R and γ , such that for all s:

$$\mathbb{P}\left(|\hat{\gamma}-\gamma|\geq \frac{s}{\sqrt{n}}\right)\leq \frac{K}{s^2}.$$

Proof sketch:

- Use the insights from the no-changepoint case scaled version of the crossings process minus the deterministic part is a martingale.
- The proof follows from Doob's submartingale inequality and the union bound.

Conclusions

- A new fully non-parametric, model-free change-point estimator, based on ideas from information theory
- Promising performance for a variety of data sources

ション ふゆ く は マ く ほ マ く し マ

- \sqrt{n} consistency in a related toy problem
- Multiple change-points? Streaming?

References

- P. Grassberger, Estimating the information content of symbol sequences and efficient codes, *IEEE Trans. Info Theory*, 35: 669-675, 1993.
- P. C. Shields, String matching bounds via coding. Ann. Probab, 25: 329-336, 1997.
- O. Johnson, DS, J. Cruise, A. Ganesh, R. Piechocki, Non-parametric change-point detection using string matching algorithms, 2011. arXiv:1106.5714v1