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Match lengths and entropy

Data sources

o Consider observing a finite-alphabet source of data with a
change-point, i.e., at an unknown time the statistical
properties of the source change.

@ We do not know statistical properties of source and do not
want to assume particular parametric family of distributions.

@ However, we need to make inference about it.



Match lengths and entropy

Change-point detection

Parametric framework:

@ postulate a parametric
family model: data
comes from a model with
some parameters 0

@ detect changes in these
parameters, e.g., in mean
and variance of normal
samples

@ can use maximum
likelihood principle

[Horvath, 1993]

Non-parametric framework:

@ monitoring changes in
the empirical mean

@ comparing empirical
distribution before and
after a putative
changepoint

[Brodsky, Darkhovsky, 1993]



Match lengths and entropy

Detecting change in entropy?

@ 0/1: We could estimate long-term density of heads by
counting, but we might also want to know ‘how random’ it is.

@ Randomness is expressed through the entropy of source.

Consider two binary sequences:
© x: 01010101010101010110
© y: 00101101011000101011

@ Both x and y have 10 0's and 10 1’s.

@ However, first has a long periodic substring, the second seems
random.




Match lengths and entropy

Detecting change in entropy? (2)

@ How can we detect a change-point when the source switches
from a boring to an interesting state or vice-versa?

@ Similar examples can be constructed on which the crude
bigram and trigram strategies fail.

@ Need a systematic way to take into account all features.



Match lengths and entropy

Match lengths

Definition
Given sequence (xo, ..., x,—1) of length n, write
'+L V= (i X 1) for substring of length L starting at i.

For each i, the match length at i is given by:

L7(x) = min{L: x/ Tt £ T for all i £ j}.

@ L7 is the length of a shortest unique prefix starting at i.



Match lengths and entropy

Substring matches

Consider two binary sequences:
© x: 01010101010101010110
© y: 00101101011000101011

o Substring x3%: 0101010101010101 (length 16) seen again at
x3': 130(x) = 17.

o Substring yg : 00101 (length 5) seen again at yi9, but nothing
longer: L2°(y) = 6.

@ “More random” sources explore bigger set of substrings and
have shorter repeats than simpler ones.

e How large do we expect L7 to be as n grows?



Match lengths and entropy

Asymptotic equipartition

[Shannon-MacMillan-Breiman| Given stationary source of entropy
H, there exists a ‘typical set’ T of strings of length m such that:

© A random string lies in T with probability > 1 — ¢.
Q Any individual string in T has probability ~ 2=™H.

Heuristically, we can predict the size of match lengths as follows:

o If string length m at point J is typical, it has probability
~27MH 55 we expect to see it ~ n2=™H times.

. log n . i
@ Hence by choosing m = <7, expect to see it once:

log n

L7~
"~ TH




Match lengths and entropy

Estimating entropy with match lengths

[Shields 1992, Shields 1997] If match lengths L} are calculated for
an 11D or mixing Markov source with entropy H,

"o 1
lim Qz—, (a.s.).
n—oo nlogn H

e [Kontoyiannis and Suhov 1993] extends the convergence for a
broad class of stationary sources.

@ Non-parametric, computationally efficient entropy estimators
with fast convergence in n (they out-perform plug-in
estimators).



Using match locations to detect change-points

Source model with a changepoint

Definition

Sample two independent sequences x(1), x(2), where x(i) ~ u; for
a stationary process y; with i = 1,2. Then, given length and
change point parameters n and ~, define the concatenated process
x by:

[ x(1); fo<i<ny-—1,
T x() ifny<i<n—1.

@ Given x, we hope to detect the change point — that is, to
estimate the true value of ~.



Using match locations to detect change-points

Match locations

o Consider match locations — for each i, write T/ for a position
of longest substring that agrees with /.

Consider two binary sequences:
© x: 01010101010101010110
© y: 00101101011000101011

o Substring x3%: 0101010101010101 (length 16) seen again at
37 TEO(x) = 2.

o Substring yg : 00101 (length 5) seen again at yi$:
T%(y) = 12.

@ T/ need not be unique: in the event of a tie, choose random
one.



Using match locations to detect change-points

Using match locations to detect change points

Idea: substrings of x(1) likely to be similar to other substrings
of x(1).

The same is true for x(2).

Expect that if i < ny then T will tend to be < nv.

Similarly, for i > nv, expect T will tend to be > nv.



Using match locations to detect change-points

Grassberger tree of shortest prefixes

@ Grassberger Treeis a
g-ary labelled tree 7,(x)
which encodes the
shortest unique prefixes
of each substring

abbaccbabbabc

@ the set of all matches of
substring at / = the set
of leaves in a subtree
rooted at a parent of /
(excluding 1)




Using match locations to detect change-points

Grassberger tree of shortest prefixes

@ We choose a match
location T/ to be an
element from the set of
all matches chosen
uniformly at random.

abbaccbabbabc




Using match locations to detect change-points

Counting crossings

Figure: Directed graph formed by linking i to T;



Using match locations to detect change-points

Counting crossings (2)

Given a putative change point 0 <j < n — 1, we write

o Cr(j) =#{k: k <j < T} for the number of left-right
crossings of J,

o Cri(j) = #{k: T} <j < k} for the number of right-left
crossings of J.




Using match locations to detect change-points

Counting crossings (3)

L CLR(Q) = 2, CRL(Q) = 3.
@ Intuitively, we look for index j such that both C;g(j) and
Cre(j) are small.

e However, C;g(j) and Cgr.(j) will be highest around the middle
of the sequence. Normalization?



Using match locations to detect change-points

CRossings Enumeration CHange Estimator: CRECHE

Definition

For 0 < j < n— 1, define the normalized crossing processes:

Co ol . c .
irRU) L4 bruli) = Cre(j) n J.

n—j n J n

Yir(j) =

and

Y(j) = max(Yr(), YrL()))-
CRECHE estimator of v is given by 4 = %arg ming<j<n—1 ¥ (J)-

@ The processes ¥ r(j) and g (j) are designed via subtracting
off the mean of Cyr(j) and Crr())

@ Related to the conductance of the directed graph



Simulation results

Results for 11D sources — no change point
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@ 50,000 symbols with distribution (0.5,0.25,0.25)



Simulation results

Results for 11D sources — with change-point
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@ 10,000 symbols with distribution (0.1,0.3,0.6) vs.
40,000 symbols with distribution (0.5,0.25,0.25)



Simulation results

1D vs. Markov
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@ Markov chain with a stationary distribution (0.3, 0.4, 0.3) vs.
[ID with distribution (0.3, 0.4, 0.3): (1) v =1/3, (2) v =2/3.
Plot based on 1000 trials



Simulation results

vs. Markov (2)
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Results for text files — German vs. English

Simulation results
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@ Excerpts from German original and English translation of

Goethe's Faust



Simulation results

Results for text files — different English authors
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@ Excerpts from English text by two different authors



Simulation results

Audio: speaker turn detection

-0.05-

w@)

-0.1-

-0.15-

Original Speaker 1  Speaker 2



Consistency

Analysis of a related toy problem

@ Would like to theoretically analyse performance of estimator 4
for this source and matching model.

@ To show % is minimised close to change point nvy, we need
uniform control of 1, g and g, .

e However, dependencies make analysis tricky.

@ Match locations tend to be roughly independent and uniform,
so we analyse related toy source model instead.



Consistency
Simple toy problem

For each i € {0,1,...,n— 1}, define T to be independently
uniformly distributed on {0,1,...,n—1}.

@ Foreach j=1,...,n—1, as before define
Clr() = #1{k  k<j< T}

for the number of LR crossings of j. Denote ¥, g and ¢g, as
before.



Consistency

Simple toy problem: confidence region

Let T be independently uniformly distributed on
{0,1,...,n—1}.Forany0 <6 <1 ands >0,

, s (1 —9)2
P su > — | < —71 .
<1§Sn8_5)|¢m0)| > ﬁ) S 532

Proof Sketch:

@ We characterize the distribution of the crossing process C;g
using Rényi’'s thinning operation.

@ This allows us to show that ;g is a martingale.

@ Doob's submartingale inequality allows us to uniformly bound
the fluctuations of ¢ g, as required.



Consistency

Toy problem vs. simulation results

05y @ Form of bound on ¢ g
o ‘ ‘ I explains high values seen
; ' ' | at RH end of the 'no
s 0-“\% ‘ ‘ I change point’ curve.
= | @ By symmetry, form of
1 ‘ ‘ ] bound on g, explains
)y ' ' ] high values on LH end.

05 0 T 7 5 o Considering the
maximum of ¢ g and
g ensures that the
curve is close to zero in
the middle: maximal
fluctuations are of the

order O(%) .



Consistency

Toy problem with a changepoint

o T generated
independently, following
a mixture of uniform
distributions

o Yoty ocl-y

Toy model: For a change location vy, and parameters
ar,ar € [0,1], define independent random variables T such that:
Q foreach0<i<ny-—1,
. 1 0<j<ny—-1
n __ ’ >/ > R
P77 =J) { ar, nmy<j<n-—1.
Q foreach my <i<n-1,

n_ - ar, 0<j<ny—1,
B(T; _J)O({ 1, my<j<n-1



Consistency

Toy problem with a changepoint (2)

1R is close to its deteministic mean function:

Coj?

Yir(j) ~ { =)

Gt -G forj>ny,

for j < nv,

for certain explicit constants Gy, C;, G, depending on oy, ag and
-



Consistency

Fluctuations from the mean
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Consistency

Toy problem vs. simulation results

o5 @ Form of mean functions
o4 explain form of curves
ool seen in change-point
graphs

linear component
of WLR

w()

quadratic component
of g A




Consistency

v/n- Consistency

The estimator 4 is \/n-consistent: there exists a constant K,
depending on «y, ag and vy, such that for all s:

P(15—r>— éﬁ.
Vvn) = s?

Proof sketch:

@ Use the insights from the no-changepoint case - scaled version
of the crossings process minus the deterministic part is a
martingale.

@ The proof follows from Doob’s submartingale inequality and
the union bound.



Consistency

Conclusions

@ A new fully non-parametric, model-free change-point
estimator, based on ideas from information theory

@ Promising performance for a variety of data sources
@ +/n- consistency in a related toy problem

e Multiple change-points? Streaming?



Consistency
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