
Topics in Fountain Coding

Dino Sejdinovi¢

A thesis submitted to the University of Bristol in accordance with the requirements

of the Degree of Doctor of Philosophy in the Faculty of Engineering

Department of Electrical and Electronic Engineering

September 2009

42732 words

Abstract

The invention of the sparse graph codes, error correction codes with low complexity

and rates close to capacity, has had an unrivaled impact on digital communication

systems. A recent advance in the sparse graph codes, fountain coding, due to its nat-

ural rate adaptivity, is becoming an error correction coding scheme of choice for many

multicasting and broadcasting systems. This thesis studies the use of fountain codes

for several non-standard coding problems commonly occuring in communications.

Generic decentralised distributed fountain coding schemes for networked communi-

cations are developed, discussed and analysed, where many non-cooperating source

nodes communicate possibly correlated data to a large number of receivers. Several

results concerning the generalised asymptotic analysis of the fountain decoder in this

decentralised and distributed coding setting are presented. The problem of foun-

tain codes with unequal error protection property is explored, where a novel class

of fountain codes, Expanding Window Fountain (EWF) codes, is proposed, analysed

and shown to o�er competitive performance applicable to scalable video multicasting.

Further, asymptotic analysis, code design and optimisation are derived for both sym-

metric and asymmetric Slepian-Wolf coding with fountain codes. It is shown how one

can obtain both channel coding and distributed source coding gains with the same

fountain coding scheme, by a judicious choice of the code parameters. The developed

methods of asymptotic analysis are extended to the problem of independent fountain

encodings at multiple source nodes which communicate to a common relay. It is

shown that the re-encoding of the multiple fountain encoded bitstreams at the relay

node with another fountain code may reduce the number of required transmissions,

and the overall code optimisation methods of such schemes are derived. Finally,

dual fountain codes are introduced and equipped with a low complexity quantisation

algorithm for a lossy source coding problem dual to binary erasure channel coding.

i

To Irma

ii

Acknowledgments

First and foremost, my sincere thanks go to Toshiba Research Europe Ltd Telecom-

munications Research Laboratory (TRL) in Bristol and its directors for fully funding

this PhD project and providing continuous support and understanding throughout

my studies. They have given me a unique opportunity to shape my career in ways

unimaginable. My time spent with TRL at two occasions in 2007 was a truly reward-

ing experience.

It takes some luck to have advisers like Dr. Robert Piechocki and Dr. Angela

Doufexi. With great patience, insightful and instructive guidance and ever positive

attitude, they managed to give me con�dence and capacity to pursue research and

enjoy it too. I will always be indebted to them for guiding me through these three

memorable years. I also owe great thanks to Mohamed Ismail, my industrial adviser,

for his helpful and observant supervision and sound advice.

The cross-departmental Information and Communication Theory reading group

has shaped, stimulated and directed my research in a decisive manner, and I am

grateful to all participants, especially Dr. Oliver Johnson and Prof. Christophe

Andrieu from the Statistics group, for their keen involvement.

Initial joint work on EWF codes with Dr. Dejan Vukobratovi¢ of University of

Strathclyde has been one of the key junctures in my work, collaboration equally

fruitful and fun, which resulted in a series of publications. My thanks also go to

all collaborators within various parts of research, Dr. Vishakan Ponnampalam, Drs.

Vladimir and Lina Stankovi¢, and Profs. Zixiang Xiong and Vojin �enk.

Finally, I would like to thank all my friends and colleagues here at the Centre

for Communications Research and elsewhere who made my time as a PhD student

dynamic, entertaining and enjoyable.

iii

Author's Declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University's Regulations and Code of Practice for Research De-

gree Programmes and that it has not been submitted for any other academic award.

Except where indicated by speci�c reference in the text, the work is the candidate's

own work. Work done in collaboration with, or with the assistance of, others, is

indicated as such. Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE: ...

iv

Contents

Abstract i

Acknowledgments iii

Author's Declaration iv

List of Figures viii

List of Tables x

List of Symbols xi

List of Abbreviations xiii

Publications xv

Preface 1

1 Introduction 5
1.1 Coding Theory: Classical vs. Modern Approach . 5
1.2 Fundamentals of Channel Coding . 8

1.2.1 Channel models . 8
1.2.2 Linear codes and their duals . 10

1.3 Belief Propagation Decoding Algorithm for BIMS channels 11
1.3.1 Binary-input MAP decoding via belief propagation 12
1.3.2 BP message update rules for iterative decoding 16

2 Fountain codes: state of the art 19
2.1 Digital Fountain Paradigm . 19

2.1.1 Multicast/Broadcast setting . 19
2.1.2 Fountain codes and binary linear fountain codes 23

2.2 LT codes . 26
2.2.1 De�nition and properties . 26
2.2.2 Decoding algorithm . 27
2.2.3 Soliton distributions . 30

2.3 Raptor codes . 32
2.4 Asymptotic analysis . 35

2.4.1 And-Or Tree Analysis . 35
2.4.2 Linear programming optimisation . 37

2.5 Fountain codes for noisy channels . 40
2.5.1 Decoding algorithm . 40
2.5.2 Analytical tools and design . 41

2.6 Distributed, weighted and windowed constructions 42
2.6.1 Distributed LT codes . 43
2.6.2 Weighted LT codes . 44
2.6.3 Windowed LT codes . 44

2.7 Beyond channel coding . 45
2.8 Systematic Raptor AL-FEC . 46

2.8.1 Systematic Raptor codes . 47
2.8.2 Precode . 49

v

2.8.3 LT generator - source triples . 51

3 Decentralised Distributed Fountain Coding 53
3.1 Data collection with decentralised distributed LT encoders 54
3.2 Generalised And-Or Lemma . 56
3.3 Informed collector nodes . 59
3.4 Decentralised Distributed Fountain Codes with Noise 62
3.5 Concluding remarks . 65

4 Fountain Codes for Unequal Error Protection 66
4.1 Introduction . 66
4.2 Weighted LT codes . 68

4.2.1 Asymptotic analysis of WLT codes . 69
4.2.2 WLT codes with two classes of importance 71
4.2.3 Probability Distribution on Fk2 induced by a WLT ensemble 74

4.3 Expanding Window Fountain codes . 75
4.3.1 Asymptotic Analysis of EWF codes . 76
4.3.2 EWF codes with two importance classes . 78
4.3.3 Probability Distribution on Fk2 induced by an EWF ensemble 82
4.3.4 Lower and upper bounds on the ML decoding of EWF codes 82
4.3.5 Simulation results . 85
4.3.6 Precoding of EWF codes . 85

4.4 Scalable Video Multicast with UEP Fountain Codes 89
4.4.1 System Setting . 91
4.4.2 Design of the EWF coding scheme for scalable multicast 92
4.4.3 Scalable EWF Multicast with two classes of receivers 93
4.4.4 EWF code ensemble selection based on video distortion measures 95
4.4.5 Simulation Results . 97
4.4.6 Precoded EWF Codes . 98

4.5 Concluding remarks . 99

5 Fountain codes for Distributed Source Coding 101
5.1 Introduction . 101
5.2 Fountain Coding with Decoder Side Information . 104
5.3 Systematic Raptor coding with decoder side information 107
5.4 Non-systematic fountain coding with partial information 109

5.4.1 Degree distribution in the decoding graph . 109
5.4.2 Shifted soliton distributions . 110
5.4.3 Penalties of the shifted soliton distributions 112
5.4.4 Optimisation of the incoming distributions 113
5.4.5 Light degree distributions and Raptor-like scheme 117

5.5 Soft-decision decoding and noisy correlation channels 119
5.5.1 Gaussian correlation . 121
5.5.2 Gaussian transmission with partial information 121
5.5.3 Binary symmetric correlation . 122
5.5.4 Simulation results . 123

5.6 Symmetric Distributed Source Coding with Fountain Codes 124

6 Fountain codes in relay networks 134
6.1 Introduction . 134
6.2 Distributed LT codes . 136

6.2.1 And-Or Lemma for DLT ensembles . 137
6.3 Selective combining at the relay . 139

6.3.1 Coding at the source nodes vs. coding at the relay node 141
6.3.2 And-Or Lemma for SDLT ensembles . 142

6.4 Optimisation of SDLT degree distributions . 145
6.5 The outer bounds on the performance of SDLT ensembles 146

vi

7 Dual fountain codes for quantisation 148
7.1 Introduction . 148
7.2 BEQ and Fountain Codes . 149

7.2.1 Dual LT encoding for BEQ . 152
7.2.2 Asymptotic rates . 152
7.2.3 Dual Raptor scenario . 154

7.3 Simulation results . 154
7.4 Concluding remarks . 156

Conclusions and Further Work 157

A Belief Propagation algorithm 160

B Linear programs and their duals 164

Bibliography 166

vii

List of Figures

1.1 Factor graph of a binary linear (3,8) code based on parity check matrix H 14
1.2 Factor graph of a binary linear (5,8) code based on generator matrix G 16

2.1 Fountain coding performed on a block of data packets 25
2.2 Raptor encoder diagram . 33
2.3 Raptor decoding graph . 34
2.4 The block diagrams of the systematic Raptor encoder and decoder 49

3.1 Generic decentralised distributed fountain coding scheme 55
3.2 Fountain coding with informed collector nodes . 61

4.1 Weighted LT codes are DDLT codes with a single class of output nodes 70
4.2 MIB and LIB packet error rates as a function of θ1, assuming z∞ = 0.01 72
4.3 Asymptotic and simulated packet error rates of WLT codes with an optimised degree

distribution as functions of reception overhead ε. 73
4.4 Asymptotic packet error rates at the �xed overhead ε = 0.03 as functions of θ1 exhibit

a phase transition. 74
4.5 Expanding Window Fountain Codes . 75
4.6 EWF codes as DDLT codes . 77
4.7 Asymptotic analysis of packet error rates versus γ1 for EWF codes with di�erent

choice of degree distribution Ω1(x) at code overhead ε = 0.05. 78
4.8 Optimisation of γ1 parameter for various overheads. 79
4.9 Asymptotic analysis of packet error rates for WLT and EWF rateless UEP codes

versus the code overhead ε. 79
4.10 Upper and lower bounds for the ML decoding of EWF codes. 84
4.11 Simulated comparison of packet error rates for WLT and EWF rateless UEP codes

at blocklength k = 5000 . 86
4.12 Comparison of asymptotic and simulated packet error rates for EWF codes at block-

length k = 2 · 104 . 86
4.13 The minimum overheads necessary to reach packet error rate of 10−2 for both MIB

and LIB class. 87
4.14 Precoding of EWF codes . 88
4.15 The simulated packet and block error rates for the precoded EWF codes. 88
4.16 The histograms of the number of received symbols required for the complete recon-

struction of the MIB and the LIB class. 89
4.17 Scalable video multicast transmission to heterogenous receivers. 92
4.18 The region of (π1, γ1) which satis�es constraints P (1)

1 = 0.95, P (2)
2 = 0.8 at ε1 = 0.1,

ε2 = 1. 94
4.19 Numerical example of γ1 optimisation in EWF video multicast for the values of

π1 ∈ {0.185, 0.23, 0.305}. 97
4.20 Admissible (π1, γ1) region for EWF codes: simulation results. 98
4.21 Admissible (π1, γ1) region for precoded EWF codes: simulation results. 99

5.1 Slepian-Wolf coding of two correlated sources . 102
5.2 Admissible rate region for Slepian-Wolf coding . 102
5.3 Fountain coded data multicast with side information. 105
5.4 Systematic Raptor for coding with partial information. 107
5.5 Comparison of distributions RSD, SRSD and DSRSD. 111

viii

5.6 Asymptotic (full lines) and simulated (dashed lines) packet error rates of the degree
distributions with the asymptotic packet error rate δ = 0.01 at the minimised code
overhead for correlation BEC with pe ∈ {0.2, 0.3, 0.4, 0.5}. 115

5.7 Lower and upper bounds associated with non-systematic fountain coding under par-
tial information . 116

5.8 Intermediate characterisation of degree distributions for partial information case pe =
0.5. 116

5.9 Comparison of asymptotic and simulated performance of light SRSD, light DSRSD
(dmax = 100) and degree distribution obtained by linear program LP2(pe = 0.5, δ =
0.004, dmax = 100,m = 500). 117

5.10 The histogram of the number of successful recoveries in non-systematic Raptor coding
with partial information. 118

5.11 The comparison of systematic and non-systematic Raptor codes for coding with noisy
side information. 124

5.12 DDLT graph resulting from the setting in Example 41. 126
5.13 Packet error rates of symmetric DSC with LT codes from Example 41, p = 1/3. . . . 128
5.14 Intermediate performance of symmetric DSC with LT codes from Example 41, p = 1/3.130

6.1 Common relay combines the encoded bitstreams of two independent source nodes and
multicasts over lossy links . 135

6.2 Relay re-encodes the incoming encoded packets with an LT code 140
6.3 Simulated and asymptotic packet error rates for SDLT ensembles with t = 10,

k = 103 and t = 10, k = 104. 144
6.4 The outer bounds on the intermediate performance of SDLT ensembles with prede-

termined Φ(x) . 147

7.1 Histogram showing the achieved compression rates with the dual LT based BEQ. . . 155
7.2 Histogram showing the achieved compression rates with the dual Raptor based BEQ. 155
7.3 Quantisation failure probability of dual fountain codes as it decreases with the increase

of the compression rate. 155

A.1 The recursive marginalisation of a multivariate function on a cycle-free factor graph 161

ix

List of Tables

4.1 EWF window contents for H.264 SVC Stefan sequence. 96

5.1 Optimal degree distributions for various intermediate performance with partial infor-
mation, pe = 0.5 . 117

5.2 Asymptotically good degree distributions for various intermediate performances . . . 130
5.3 The optimal limiting degree distributions for various values of p 133

6.1 Pairs of degree distributions for SDLT ensembles . 146

x

List of Symbols

x A scalar variable

X A random variable

X An alphabet of a random variable

x A vector

xi The i-the element of vector x

x|A Restriction of vector x to the coordinate set A

w(x) Hamming weight of x

supp(x) Support set of x, i.e., set of coordinates i such that xi 6= 0

M A matrix

mj
i The element in the i-th row and j-th column of a matrix M

(.)ᵀ Matrix transpose

R (R+) The set of all (positive) real numbers

Z The set of all integers⌊
x
⌋

The largest integer smaller than or equal to x⌈
x
⌉

The smallest integer larger than or equal to x

(x)Z x rounded to the nearest integer

N The set of all natural numbers

Fq The �nite �eld of q elements

Fk The k-dimensional vector space over the �eld F

Fn×k The space of all n× k matrices over the �eld F

Nk The set {1, 2, . . . , k}

χ{P (x)} The indicator function, equals one if the logical predicate P (x) is true, and zero otherwise

PX(x) Probability of X = x

PX|Y (x|y) Probability of X = x given Y = y

E[X] Expectation of random variable X

H(X) Entropy of X

H(X,Y) Joint entropy of X and Y

H(X|Y) Entropy of X conditional on Y (equivocation)

h(p) The binary entropy of p

I(X;Y) The mutual information of X and Y

xi

lnx Natural logarithm of x

tanhx Hyperbolic tangent of x

atanhx Inverse hyberbolic tangent of x

arg maxx∈S f(x) Argument which maximizes f(x) on S(
n
k

)
Binomial coe�cient n!

k!(n−k)!(
n

k1,k2,...,kr

)
Multinomial coe�cient n!

k1!k2!···kr!

C Communication channel

Cap(C) Capacity of communication channel C

pe Erasure probability of a binary erasure channel

N (µ, σ2) The normal distribution with mean µ and variance σ2⊕
Logical XOR operation, i.e., modulo 2 addition

L(v) Log-likelihood ratio corresponding to the node v in the belief propagation algorithm

LT (k,Ω(x)) LT code ensemble of dimension k with output degree distribution Ω(x)

G[i1,i2,...,in]
LT LT generator matrix used to generate encoded symbols yi1 , yi2 , . . . , yin

ε Fountain code overhead

ζ The number of reconstructed data packets per blocklength

ρ The number of received data packets per blocklength

Ψk(x) The generating polynomial of the ideal soliton distribution on Nk

Ψk,c,δ(x) The generating polynomial of the robust soliton distribution on Nk with parameters c
and δ

Ωraptor(x) The generating polynomial of the constant average degree raptor distribution (2.13)

GG The factor graph of the code described by the generator matrix G

N(v) Neighbourhood of v, i.e., the set of all nodes in a graph incident to node v

O(f(x)) Landau asymptotic growth notation - set of the functions at most a constant times f(x)
in absolute value

xii

List of Abbreviations

BEQ Binary Erasure Quantisation

BIAWGNC Binary-Input Additive White Gaussian Noise Channel

BL Base Layer

BP Belief Propagation

BSC Binary Symmetric Channel

CIF Common Intermediate Format

DDLT Decentralised Distributed Luby Transform

DF Digital Fountain

DLT Distributed Luby Transform

DSC Distributed Source Coding

DSRSD Distributionally Shifted Robust Soliton Distribution

DVB Digital Video Broadcasting

EL Enhancement Layer

EWF Expanding Window Fountain

FEC Forward Error Correction

GOF Group Of Frames

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IPTV Internet Protocol Television

LDGM Low-Density Generator Matrix

LDPC Low-Density Parity Check

LIB Less Important Bits

LLR Log-Likelihood Ratio

LT Luby Transform

MAP Maximum A Posteriori

MBMS Multimedia Broadcast-Multicast Services

MIB More Important Bits

ML Maximum Likelihood

NP Nondeterministic Polynomial time

PSNR Peak Signal-to-Noise Ratio

xiii

QoS Quality of Service

RSD Robust Soliton Distribution

SDLT Selective Distributed Luby Transform

SNR Signal-to-Noise Ratio

SP Survey Propagation

SRSD Shifted Robust Soliton Distribution

SVC Scalable Video Coding

SWC Slepian-Wolf Coding

UEP Unequal Error Protection

URT Unequal Recovery Time

WLT Weighted Luby Transform

XOR eXclusive OR

xiv

Publications

To make referencing and citations unique, all references are collected in a single bibliography at the
end of this thesis.

1. Journal publications:

[J1] D. Sejdinovi¢, D. Vukobratovi¢, A. Doufexi, V. �enk, R. Piechocki, �Expanding window
fountain codes for unequal error protection�, IEEE Trans. Commun. 57(9), pp. 2510-2516,
Sept. 2009.

[J2] D. Vukobratovi¢, V. Stankovi¢, D. Sejdinovi¢, L. Stankovi¢, Z. Xiong, �Expanding window
fountain codes for scalable video multicast�, IEEE Trans. Multimedia 11(6), pp. 1094-1104,
Oct. 2009.

[J3] D. Sejdinovi¢, R. Piechocki, A. Doufexi, M. Ismail, �Fountain code design for data mul-
ticast with side information�, IEEE Trans. Wireless Commun. 8(10), pp. 5155-5165, Oct.
2009.

[J4] D. Sejdinovi¢, R. Piechocki, A. Doufexi, M. Ismail, �Decentralised distributed fountain
coding: Asymptotic analysis and design�, IEEE Commun. Letters 14(1), pp. 42-44, Jan.
2010.

2. Conference proceedings publications:

[C1] D. Sejdinovi¢, R. Piechocki, A. Doufexi, �Note on systematic Raptor design�, Proc. IEEE
Winterschool on Coding and Information Theory, p. 31, La Colle Sur Loup, France, Mar.
2007.

[C2] D. Vukobratovi¢, V. Stankovi¢, D. Sejdinovi¢, L. Stankovi¢, Z. Xiong, �Scalable data
multicast using expanding window fountain codes�, in Proc. Allerton Conf. on Commun.,
Control and Computing, Monticello, IL, USA, Sept. 2007.

[C3] D. Sejdinovi¢, D. Vukobratovi¢, A. Doufexi, V. �enk, R. Piechocki, �Expanding window
fountain codes for unequal error protection�, in Proc. Asilomar Conf. on Signals, Systems
and Computers, pp. 1020-1024, Paci�c Grove, CA, USA, Nov. 2007.

[C4] D. Sejdinovi¢, V. Ponnampalam, R. Piechocki, A. Doufexi, �The throughput analysis of
di�erent IR-HARQ schemes based on fountain codes�, in Proc. IEEE Wireless Commun. and
Networking Conf. WCNC, pp. 267-272, Las Vegas, NV, USA, Apr. 2008.

[C5] D. Sejdinovi¢, R. Piechocki, A. Doufexi, M. Ismail, �Fountain coding with decoder side
information�, in Proc. IEEE Int'l Conf. on Commun. ICC, pp. 4477-4482, Beijing, China,
May 2008.

[C6] D. Vukobratovi¢, V. Stankovi¢, D. Sejdinovi¢, L. Stankovi¢, Z. Xiong, �Expanding window
fountain codes enabling scalable video multicast�, in Proc. IEEE Int'l Conf. on Multimedia
& Expo ICME, pp.77-80, Hanover, Germany, June 2008.

[C7] D. Vukobratovi¢, V. Stankovi¢, D. Sejdinovi¢, L. Stankovi¢, Z. Xiong, �Expanding window
fountain codes for scalable video multicast�, in Proc. 6th COST 2100 MCM, Lille, France, Oct.
2008.

[C8] D. Sejdinovi¢, R. Piechocki, A. Doufexi, M. Ismail, �Rate adaptive binary erasure quan-
tization with dual fountain codes�, in Proc. IEEE Global Commun. Conf. GLOBECOM, pp.
1203-1207, New Orleans, LA, USA, Dec. 2008.

[C9] D. Sejdinovi¢, R. Piechocki, A. Doufexi, �And-Or tree analysis of distributed LT codes�,
in Proc. IEEE Information Theory Workshop ITW, Volos, Greece, pp. 261-265, June 2009.

[C10] D. Sejdinovi¢, R. Piechocki, A. Doufexi, �Rateless distributed source code design�, in
Proc. Int'l Mobile Multimedia Commun. Conf. MobiMedia, London, UK, Sept. 2009 (invited
paper).

xv

Preface

Over the past two decades we have seen paramount advances in the error correction

coding research. Shannon's fundamental limits on channel coding have long been the

unattainable mathematical constructs for the practicioners, without known practical

coding schemes which are able to approach these limits in a computationally e�cient

way. The advent of the sparse graph coding theory, coupled with the advanced and

e�cient decoding methods based on the belief propagation algorithm changed the

way we think about the error correction. Codes for point-to-point communication

through an unreliable medium can now be designed to perform nearly optimally

both in the information theoretic sense - they provably approach Shannon limit, and

in the computational sense - these codes are encoded and decoded with very low

computational complexity. Fountain codes are a family of sparse graph codes which

attempt to take the channel coding research to a new exciting direction. Rather

than designing a �xed coding scheme which is suitable for a given channel model,

the aim of fountain coding is to design a coding scheme which would perform nearly

optimally at varying or even unknown channel conditions. Unlike the traditional

coding schemes, fountain codes are able to adapt their rate on-the-�y - they are

rateless in the sense that a potentially limitless number of the encoded symbols can

be generated from the data and the original message can be recovered from any

su�ciently large set of encoded symbols. This makes fountain codes particularly

suitable for multicasting and broadcasting applications where users may experience

di�erent channel characteristics, e.g., for wireless networks. Fountain coding has

merited a striking momentum in the channel coding research over the last decade,

and the results reported here discuss only a fraction of these e�orts.

An outline of the material and the original contributions presented in this thesis

1

is as follows:

• Chapter 1 contextualises the topics covered in the subsequent chapters. We

overview the fundamentals of channel coding and iterative decoding methods,

give historic perspective on the development of sparse graph coding theory and

highlight several important aspects of the overviewed methodology.

• In Chapter 2, state-of-the-art fountain coding methods for standard channel

coding applications, i.e., LT and Raptor codes, are recapitulated and a rigor-

ous asymptotic analysis of the performance of fountain codes is formulated. In

addition, we review the recent advances in fountain codes which deal with alter-

native fountain code design problems and proposals. The use of fountain codes

for source coding and distributed source coding problems is also brie�y exam-

ined. Finally, we illustrate fountain code design considerations for fountain code

implementations in practical systems on the example of Systematic Raptor Ap-

plication Layer Forward Error Correction (AL-FEC) solution recently adopted

within various standardisation bodies, some aspects of which were discussed in

Proc. IEEE Winterschool on Coding and Information Theory [1].

• After setting up the stage and rea�rming the tools at our disposal in the �rst two

introductory Chapters, in Chapter 3 we introduce a class of generic decentralised

distributed fountain coding schemes for reliable recovery of the data dispersed

across a set of nodes in a network. Although code design for such schemes is a

vastly more challenging problem compared to the standard fountain coding, not

least because it typically requires both the multiterminal source coding and the

channel coding gains, by appropriately generalising established techniques for

analysis of sparse graph codes, performance analysis of decentralised distributed

fountain coding is formalised and a robust code design methodology in a number

of important instances is derived. The derived techniques �nd applications in

two core parts of our consequent contributions: fountain codes for unequal error

protection (UEP) and distributed source coding (DSC) with fountain codes.

Some of the materials from this Chapter appear in IEEE Communication Letters

[2].

2

• Fountain codes for UEP are explored in Chapter 4. We present two approaches to

realise fountain coding schemes with UEP and Unequal Recovery Time (URT)

properties: Weighted Luby Transform (WLT) codes, introduced originally by

Rahnavard et al. [3], for which we give novel tools of design and analysis based

on the results from Chapter 3, and Expanding Window Fountain (EWF) codes

which we developed in publications appearing in Proc. Asilomar Conf. Signals,

Systems and Computers 2007 [4] and IEEE Trans. Communications [5], and

subsequently studied (in a joint international collaboration) in the context of

scalable video multicasting and broadcasting with the results reported in Proc.

Allerton Conf. Comm., Control, and Computing 2007 [6], Proc. IEEE Inter-

national Conference on Multimedia and Expo ICME 2008 [7]and IEEE Trans.

Multimedia - Special Issue on Quality-Driven Cross-Layer Design for Multimedia

Communications [8]. Our results demonstrate that EWF codes are, as a novel

class of fountain codes for UEP/URT, amenable to rigorous analysis and yet they

exhibit a high potential in practical applications, exceeding the performance of

WLT codes in several important aspects of interest.

• Methods for distributed source coding based on fountain codes are examined

in Chapter 5. The problem of fountain code design for multicasting with de-

coder side information is formulated and solutions based on several di�erent

approaches which appear in the literature are studied. Our contributions unify

these di�ering approaches and propose a methodology for robust analysis and

design of fountain codes with decoder side information, i.e., rateless asymmetric

Slepian-Wolf coding. In addition, the sharp performance bounds are obtained

and extensive numerical simulations which justify our code design methodology

are reported. These results appear in part in Proc. IEEE International Con-

ference on Communications ICC 2008 [9] and in IEEE Trans. Wireless Com-

munications [10]. An immediate application in the design of IR-HARQ schemes

based on fountain codes is presented in Proc. IEEE Wireless Communications

and Networking Conference WCNC 2008 [11]. In addition, we look into the

problem of rateless symmetric Slepian-Wolf codes for particular instances of

Slepian-Wolf problems and show how one can modify fountain code design in

3

order to closely approach the optimal symmetric point of the Slepian-Wolf admis-

sible rate region. Thus, we were able to produce an equivalent of asymptotically

optimal Soliton distribution in channel coding case, for a substantially di�erent

problem of symmetric distributed source coding. These results are reported in

part in the invited paper appearing in Proc. International Mobile Multimedia

Communications Conference MobiMedia 2009 [12].

• In Chapter 6, the performance of fountain coding in relay networks with physi-

cally separated and non-cooperating sources is explored. We formulate the gen-

eralisation of distributed LT code design problem originally proposed in [13, 14],

propose alternative coding methods based on re-encoding the incoming packets

in a fountain-like fashion at the relay and derive asymptotic analysis of such

novel coding schemes. Our results demonstrate that it may be bene�cial to per-

form fountain-like coding both at the source nodes and at the relay nodes in

networked communication and that distributed decentralised coding problems

of Chapter 3 can be naturally extended to the setting where rateless networked

communication bene�ts from the presence of dedicated relaying nodes. This

work is published in Proc. IEEE Information Theory Workshop ITW 2009 [15].

• Finally, Chapter 7 demonstrates that principles of fountain coding can be used

for the construction of rate-adaptive quantisation on the example of binary era-

sure quantisation (BEQ), in addition to their now well established use in channel

coding and distributed source coding. We introduce dual fountain codes and pro-

pose their use for BEQ in conjunction with the developed quantisation algorithm

which can be viewed as a natural dual version of the LT decoding algorithm over

erasure channels. This study opens the door for use of dual fountain codes in

sparse graph coding approach to lossy source compression, which is an open

problem recently attracting signi�cant interest. The reported results were pub-

lished in Proc. IEEE Global Telecommunications Conference GLOBECOM 2008

[16].

4

Chapter 1

Introduction

1.1 Coding Theory: Classical vs. Modern Approach

Ever since his seminal 1948 paper A Mathematical Theory of Communication [17],

the fundamental limits of reliable communication established by Shannon have been

the model and the driving force for the subsequent remarkable advances of coding

and information theory. In the introduction, Shannon wrote:

The fundamental problem of communication is that of reproducing at one

point either exactly or approximately a message selected at another point.

A basic solution to this problem is rather intuitive. We should encode the selected

message by adding some redundant information, such that even if the transmitted

encoded message is corrupted by noise, there will be su�cient redundancy in it to

recover the original message. Now, we face the two critical questions of the code

designer - one is quantitative: how much redundancy is required?, and one is qualita-

tive: what kind of redundancy is the best choice? These questions are interesting both

from the theoretical and from the practical point of view. By quantifying the amount

of redundancy required in order to reliably reproduce the original message at the

receiver, we make sense of what is the optimum use of the communication resources

at our disposal, e.g., of channel bandwidth. Each coding scheme is thus assigned

a certain number, called the information rate, which states, in a natural way, what

portion of the transmitted information is useful. On the other hand, the qualitative

question looks for the actual coding schemes, which should not only optimally use the

communication resources, but also be equipped with the set of encoding and decoding

5

algorithms which can be performed practically and e�ciently. Thus, the aim of the

code designer is to identify the coding schemes with the largest possible information

rate which have: (a) a vanishing probability of decoding error, (b) e�cient encoding

and decoding algorithms.

Shannon answered the quantitative question and proved that there is a certain

limit to the information rate of reliable transmission over a noisy channel. Shannon's

result states that for a communication channel C, there exists a certain number

Cap(C) ∈ [0, 1], called the channel capacity, such that if and only if R < Cap(C), there

exists a reliable coding scheme of information rate R, i.e., the coding scheme with

arbitrarily small error probability. However, Shannon's proof was non-constructive

and probabilistic. The second question was still left unanswered - which coding

schemes would bring us close to this channel capacity in an e�cient way? Coding

theory has seen some extraordinary advances over the decades, borrowing insights

from various �elds of mathematics and engineering, posing and answering beautiful

problems of both the theorists and the practicioners. Nonetheless, e�cient capacity

achieving coding schemes were still unknown. As Shannon's proof implied that a

random linear coding scheme would, in fact, approach channel capacity (but would

not posess su�cient structure to formulate e�cient decoding algorithms), the attitude

among coding theorists at the time is best illustrated by Wozencraft and Rei�en [18]:

Any code of which we cannot think is good.

This seems to have been the predominant attitude until the 90s, even with some

attempts to formally prove the claim [19]. Thus, it was not until early 90s that

we glimpsed the answer to the qualitative question with the introduction of Turbo

codes [20, 21]. Their novelty lied within using the pseudorandom interleavers in the

encoding algorithm and within the carefully designed iterative decoding algorithm.

Informally, via pseudorandom interleavers, Turbo codes obtained enough �random-

ness� to closely approach capacity, yet preserving enough structure to allow e�cient

encoding and decoding algorithms. As the �rst practical codes which approach chan-

nel capacity, Turbo codes initiated the revolution in the �eld of error correction

coding, and were initially on the verge of disbelief and dismissal of coding theoretic

community. In fact, the initial conference publication introducing Turbo codes was

6

rejected by the referees as too good to be true [22]. Today, however, Turbo codes are

becoming an important piece of every-day technology laboriously making our lives

easier - they are employed in 3G mobile telephony, several Satellite communictions

standards and in IEEE 802.16 metropolitan wireless network standards (cf. [23] and

references therein).

Soon after Turbo codes provided the initial momentum to the paradigm shift in

error correction coding, low-density parity-check (LDPC) codes, originally introduced

in 1963 by Gallager [24] and then largely forgotten, were being rediscovered by many

researchers independently, MacKay, Neal [25, 26, 27], Wiberg [28, 29], Sipser and

Spielman [30, 31]. LDPC codes were shown to have excellent performance compara-

ble to and often exceeding that of Turbo codes. Since then, LDPC codes and their

iterative decoding algorithms have been widely adopted and analysed. Paramount

research e�orts devoted to our formal understanding of this new approach to error

correction coding resulted in the entirely new �eld of modern coding theory [32], as

opposed to the classical coding theory which deals mainly with the algebraic construc-

tion of codes. As a consequence, practical codes and decoding algorithms are known

today which perform incredibly close to the channel capacity [33], have exceptionally

low computational complexity and are amenable to rigorous mathematical analysis

[34]. According to this new attitude of coding theory [32]:

Codes are viewed as large complex systems described by random sparse

graphical models.

Decoding is thus performed as inference on the sparse graphical models [35], and the

algorithm of choice is a Bayesian procedure called the belief propagation algorithm

previously studied in arti�cial intelligence [36]. Belief propagation realises exception-

ally e�cient inference on sparse graphical models, and, in particular, on the sparse

factor graphs (often called Tanner graphs [37]) - the graphical models corresponding

to LDPC codes. Soon after the rediscovery of LDPC code, it has been recognised

that the iterative decoder of LDPC codes is, in fact, a belief propagation decoder

[38, 27]. Nonetheless, it has also been shown that decoding of Turbo codes is another

instance of belief propagation algorithm [39]. Thus, the two coding schemes that

changed the way we think of error correction coding are, in a way, two realisations of

7

the same underlying principle, whereupon it seems that the best redundancy from the

qualitative question of the code designer is the redundancy that can be represented

by a sparse graphical model on which we can run a belief propagation algorithm.

1.2 Fundamentals of Channel Coding

1.2.1 Channel models

In channel coding, the objective is to transmit a message, i.e., a sequence of k symbols

x = (x1, x2, . . . , xk) ∈ X k, which are elements from a predetermined alphabet X ,

across a noisy channel. For that purpose, the encoder maps the sequence x to the

codeword y = (y1, y2, . . . , yn) ∈ Yn which is then transmitted and impaired by channel

noise. The decoder observes a sequence of corrupted symbols, i.e., a received word

z = (z1, z2, . . . , zn) ∈ Zn and estimates y based on z. Vectors x, y and z can be

viewed as realisations of random variables, X on X k, Y on Yn, Z on Zn, respectively.

Consequently, each xi, yi and zi is a realisation of scalar random variables Xi, Yi and

Zi, respectively. In addition, we often assume that each Xi, Yi and Zi is independent

and identically distributed (i.i.d.) according to probability density function PX(x),

PY (y) and PZ(z), respectively. The relationship between Y and Z is modelled by

a conditional probability density function PZ|Y(z|y). To model a communication

channel means to specify its probability density function.

We focus on channel models which are binary-input, memoryless and symmetric

(BIMS channels). These channels have a binary codeword symbol alphabet Y , repre-

sented either as F2 = {0, 1} or as set {−1,+1}. Whenever codeword symbol alphabet

{−1,+1} is used, mapping 0 7→ +1, 1 7→ −1 is implicit in our discussion. In addi-

tion, BIMS channels have no memory: the output of such channel at any time instant

depends only on its input at that time instant, i.e., PZ|Y(z|y) =
∏n

j=1 PZj |Yj
(zj|yj).

Furthermore, the symmetry condition implies that the channel output is symmetric

in its input. This condition is more di�cult to express when Y = F2. Nonetheless, if

one models Y = {−1,+1} and Z ⊂ R, the symmetry condition becomes simple:

PZ|Y (z|1) = PZ|Y (−z| − 1), ∀z ∈ Z. (1.1)

8

The maximum amount of information per symbol that can be conveyed about

the codeword Y from the received word Z in the case of a memoryless channel C, is

referred to as the channel capacity:

Cap(C) = sup
PY (y)

I(Y ;Z), (1.2)

where I(Y ;Z) denotes mutual information between the random variables Y and

Z, and is typically expressed in bits when logarithms to the base 2 are used as

measurement of mutual information.

Shannon showed that reliable transmission is possible at all code rates R <

Cap(C).

Example 1. Binary erasure channel (BEC) with parameter pe has binary input

Y = F2 and ternary output Z = {0, 1, ∗}, where ∗ is a special symbol at the channel

output indicating that an erasure has occured. No bit �ips occur over a binary erasure

channel, i.e., PZ|Y (1|0) = PZ|Y (0|1) = 0. However, each codeword symbol is erased

with probability pe, i.e., PZ|Y (∗|0) = PZ|Y (∗|1) = pe, and received correctly with

probability 1−pe. The capacity of binary erasure channel is 1−pe [40]. To view it as

a BIMS channel (and test the symmetry condition), one can map Y and Z to reals

by 0 7→ +1, 1 7→ −1 and ∗ 7→ 0.

Example 2. Binary symmetric channel (BSC) with parameter ps has Y = Z =

F2 and introduces errors in received symbols with probability ps, i.e., PZ|Y (1|0) =

PZ|Y (0|1) = ps. The capacity of binary symmetric channel is equal to 1− h(ps) [17],

where h(ps) is the binary entropy function

h(ps) = −ps log2 ps − (1− ps) log2 ps. (1.3)

Example 3. Binary input additive white Gaussian noise channel (BIAWGNC) with

parameter σ2 has Y = {−1,+1} and Z = R. The received word symbol Z is given

by Z = Y + N , where N ∼ N (0, σ2) is a Gaussian random variable with mean zero

and noise variance σ2. The capacity of BIAWGNC can be expressed as [32]:

9

Cap(BIAWGNC(σ)) = (1.4)

1− 1

2
√
πm

´∞
−∞ log2(1 + e−t)e−

(t−m)2

4m dt,

where m = 2/σ2.

1.2.2 Linear codes and their duals

The most common channel codes are binary linear codes, with both the message

symbol alphabet and the codeword symbol alphabet restricted to F2. A binary linear

coding scheme can be viewed as a linear mapping from the set of messages Fk2 to

the set of codewords C ⊂ Fn2 , where C forms a k-dimensional vector subspace of Fn2 .

It is typically this vector subspace C that is called code, as it captures the relevant

structure of the coding scheme. We refer to this code as an (n, k) binary linear code,

where n is the length and k is the dimension of the code, whereas its code rate R is

de�ned as k/n. Unless stated otherwise, all vectors appearing in the discussion are

column vectors.

Linear code can be fully described by its basis {g1,g2, . . . ,gk}, where gi ∈ Fn2 ,

which leads to the generator matrix representation of a linear code. Namely, an n×k

matrix G is called the generator matrix of code C if

c ∈ C ⇔ ∃x ∈ Fk2 : Gx = c. (1.5)

Note that any matrix with columns that form a basis of C is a generator matrix of

C and that representation by generator matrix allows a simple mechanism of mapping

the messages to the codewords.

Alternatively, we can specify C indirectly, by specifying its dual (orthogonal) sub-

space C⊥ within Fn2 and its basis {h1,h2, . . . ,hn−k}. The dual subspace of C is de�ned

as

C⊥ = {c′ ∈ Fn2 : c′ · c = 0 ∀c ∈ C}. (1.6)

This way, we can form the parity check matrix representation of a linear code. An

10

(n− k)× n matrix H is the parity check matrix of C if

c ∈ C ⇔ Hc = 0. (1.7)

Clearly, any matrix with rows that form a basis of C⊥ is a parity check matrix of

C.

The dual subspace C⊥ of a linear (n, k) code C is another linear code with length n

and dimension n− k, called the dual code of C. The transposed parity check matrix

of C is the generator matrix of C⊥ and vice versa.

In fountain codes, we deal with coding schemes which have no �xed rate (nor

length) apriori. Each row of the generator matrix of such coding scheme is generated

on-the-�y and can be viewed as a random variable on Fk2, where k is the dimension

of the code. Thereby, at any time instant j ∈ N, the fountain encoder generates a

single encoded symbol yj = vj · x from the message x ∈ Fk2, where vj is a randomly

chosen row vector from Fk2 (row of the generator matrix). In such scheme, the re-

ceiver observes a number of received word symbols zi1 , zi2 , . . . , zin corresponding to

the transmitted symbols yi1 , yi2 , . . . , yin . This means that the resulting code (at the

receiver) is an (n, k) binary linear code described by a generator matrix with vectors

vi1 ,vi2 , . . . ,vin as its rows. Whenever decoding of such a code fails, the receiver can

collect additional encoded symbols which result in a code of greater length.

1.3 Belief Propagation Decoding Algorithm for BIMS chan-

nels

General decoding problem of linear codes for BIMS channels is known to be NP-

complete [41], i.e., of su�ciently large complexity such that it is very likely that we

would never have an e�cient practical algorithm for it (regardless of the available

computational resources). However, it is often, from a practical point of view, su�-

cient to formulate a suboptimal iterative algorithm for a small subclass of decoding

problems.

Like many other algorithms, decoding of linear codes deals with the optimisation

of a rather complicated global function of a large number of variables. This is why

11

decoding is a hard problem. Nonetheless, if we can factor this global function into a

product of �local� functions, i.e., functions de�ned on small subsets of the set of all

variables, we have a starting point in the construction of the e�cient algorithm. This

factorisation is usually visualised with a bipartite graph, called factor graph. The

factor graph is used to represent relations between local functions and variables - it

describes which variables are arguments of which local functions. These graphs are

straightforward generalisation of Tanner graphs [37], which describe LPDC codes.

To be rigorous, we could say that a factor graph is a graphical model on which

we can perform Bayesian inference [35], and, in particular, the Belief Propagation

(BP) algorithm [36]. Nonetheless, the general idea behind these words is an intuitive

one. Belief propagation algorithm simply exploits the factorisation of the global

function to e�ciently compute the global function many times (in order to optimise

it). This is on the same conceptual level as the distributive law computations [42].

The typical toy example of the use of the distributive law in the e�cient computation

is the computation of the function of three variables f(a, b, c) = ab + ac, where it is

clearly more e�cient to compute the factorised version of the function f(a, b, c) =

a(b + c) (one addition and one multiplication) than its unfactorised version (two

multiplications and one addition).

We relegated the discussion on the belief propagation algorithm to Appendix A.

Instances of the belief propagation algorithm include not only the iterative decoding

procedures for sparse graph codes, but also a diverse set of algorithms such as BCJR,

Viterbi, Kalman �ltering and certain instances of the fast Fourier transformation

(cf. [43] for more details). In the following we will discuss how belief propagation

algorithm relates to the decoding problem of binary linear codes.

1.3.1 Binary-input MAP decoding via belief propagation

Consider the transmission of binary codewords of length n through a binary-input

memoryless symmetric channel. Let us assume that the codeword x = (x1, x2, . . . , xn) ∈

Fn2 , is generated by an (n, k) linear code C described by its parity check matrix H =

(hji) ∈ F(n−k)×n
2 . Denote the received word at the transmitter by y = (y1, y2, . . . , yn).

Furthermore, assume that the channel is described by its transition probability

12

PY|X(y|x) =
∏n

j=1 PYj |Xj
(yj|xj). Maximum a posteriori (MAP) decoding problem

can be described as the optimisation problem:

x̂MAP
i = arg max

xi∈{0,1}
PXi|Y(xi|y), i ∈ Nn. (1.8)

The previous can be transformed as follows

x̂MAP
i = arg max

xi∈{0,1}

∑
∼xi

PX|Y(x|y) =

= arg max
xi∈{0,1}

∑
∼xi

PY|X(y|x)PX(x) =

= arg max
xi∈{0,1}

∑
∼xi

(
n∏
j=1

PYj |Xj
(yj|xj))χ{x∈C},

where χ{·}is the indicator function. Therefore, MAP decoding consists of the

marginalisation of the function

f(x1, . . . , xn ; y1, y2, . . . , yn) = (
n∏
j=1

PYj |Xj
(yj|xj))(

n−k∏
j=1

χ{hj ·x=0}),

over each variable xi, i ∈ Nn, where hj, j ∈ Nn−k, denotes the j-th row of the parity

check matrix H. This marginalisation can be performed by a belief propagation

algorithm on a factor graph corresponding to the parity check matrix H.

Example 4. Consider a binary linear (3, 8) code C1 described by the following parity

check matrix:

H =



0 1 0 0 0 0 1 1

1 1 0 1 0 0 0 0

0 0 1 0 0 1 1 0

0 0 0 1 1 1 0 0

1 0 1 0 1 0 0 1


. (1.9)

The factor graph G1 for C1 is illustrated in Figure 1.1. Variable nodes are denoted

with circles, while factor nodes are denoted with squares. This is typically the form

that a decoding graph for LDPC codes takes, as LDPC codes are characterised by

a sparse parity check matrix H. Note that the factor nodes corresponding to the

13

1 1(|)y xP

1x

2 2(|)y xP

2x

3 3(|)y xP

3x

4 4(|)y xP

4x

5 5(|)y xP

5x

6 6(|)y xP

6x

7 7(|)y xP

7x

8 8(|)y xP

8x

2{ 0}χ =h x1{ 0}χ =h x 4{ 0}χ =h x 5{ 0}χ =h x3{ 0}χ =h x

Figure 1.1: Factor graph of a binary linear (3,8) code based on parity check matrix H

functions PYj |Xj
(yj|xj) are connected only to a single variable node xj as they are

functions of a single variable (yj is the channel output known to the decoder). De-

coding graphs of LDPC codes are often drawn without these nodes, as the messages

they pass to their respective variable nodes remain the same during the algorithm

(they are dependant only on the channel output). Thus, we can view this message as

the intrinsic information associated to a variable node, as opposed to the extrinsic

information in the messages passed from the indicator function factor nodes (and

previously passed from other variable nodes). Note that an edge between a variable

node xj and a factor node corresponding to an indicator function χ{hi·x=0} signi�es

that hji = 1.

Similar reasoning can be applied if the binary linear (n, k) code C is described

by a generator matrix G = (gji) ∈ Fn×k2 . Namely, assume that the message x =

(x1, x2, . . . , xk) ∈ Fk2 is mapped to the codeword y = Gx = (y1, y2, . . . , yn) ∈ C and

denote the received word by z = (z1, z2, . . . , zn). In that case, MAP decoding consists

of the marginalisation of the function

f(x1, x2, . . . , xk, y1, y2, . . . , yn; z1, z2, . . . , zn) =
n∏
j=1

(
PZj |Yj

(zj|yj)χ{gj ·x=yj}
)
, (1.10)

where gj denotes the j-th row of the generator matrix G. When this factor

graph is cycle-free, these marginalisations are exact (cf. Appendix A) and the belief

propagation decoder is thus the optimal MAP decoder. Again, marginalisation is

performed e�ciently by the belief propagation decoder.

14

Example 5. Consider a binary linear (5, 8) code C2 described by the following gen-

erator matrix:

G =



0 1 0 0 1

1 1 0 0 0

0 0 1 0 1

0 1 0 1 0

0 0 0 1 1

0 0 1 1 0

1 0 1 0 0

1 0 0 0 1



. (1.11)

The factor graph G2 for C2 is illustrated in Figure 1.2. This is typically the form

that a decoding graph for a low-density generator matrix (LDGM) code takes, as

LDGM codes are characterised by a sparse generator matrix G. Again, messages

passed from the factor nodes corresponding to the functions PZj |Yj
(zj|yj), and for-

warded from the variable nodes yj, j ∈ N8, never change during the algorithm and

the decoding graph of an LDGM codes is often, for brevity, drawn without these two

sets of nodes. Thus, each message corresponding toPZj |Yj
(zj|yj) can be interpreted as

the intrinsic information associated to the indicator function factor node connected

to yj. An edge between a variable node xj and a factor node corresponding to an

indicator function χ{gi·x=yi} signi�es that g
j
i = 1. Note that the graph structure of the

graphs G1 and G2 (excluding the additional sets of degree-one nodes corresponding

to functions P(zj|yj)) is the same - only the roles of factor and variable nodes are

exchanged. This is because G = Hᵀ, which means that codes C1 and C2 are dual

(cf. overview of linear codes and their duals in Section 1.2). This will be an impor-

tant property of dual codes in the construction of a rate adaptive scheme [16] for

binary erasure quantisation problem [44] based on fountain codes, which is reported

in Chapter 7.

Unfortunately, the class of codes which admit a cycle-free factor graph representa-

tion are not powerful enough to closely approach Shannon's capacity limits. Namely,

it can easily be shown [32] that these codes have a considerably large number of code-

words of weight 2 and, hence, su�er from a large probability of error. This problem

15

1x

1 1(|)z yP

1y

3 3(|)z yP

3y

4 4(|)z yP

4y

5 5(|)z yP

5y

6 6(|)z yP

6y

7 7(|)z yP

7y

8 8(|)z yP

8y

2x 3x 4x 5x

2 2(|)z yP

2y

8 8{ }yχ =g x

Figure 1.2: Factor graph of a binary linear (5,8) code based on generator matrix G

even persists if we allow only a small number of cycles. Alternatively, one could use

a di�erent cycle-free graphical representation of the coding scheme, as in, e.g., con-

volutional codes, typically with a large number of additional state nodes. However,

this approach considerably increases the computational complexity of the decoder.

A simpler way altogether is to perform the belief propagation message update rules

on a graph with cycles anyway. Perhaps surprisingly, excellent performance can be

achieved this way [33], although it does not result in the MAP decoding, but is strictly

suboptimal.

1.3.2 BP message update rules for iterative decoding

Each message µv(x) passed from node v during the BP algorithm for the decoding of

binary linear codes is simply a real-valued function on F2 = {0, 1}, so we can represent

it by specifying its values at x = 0 and x = 1 in a vector (µv(0), µv(1)) ∈ R2. It is

convenient to introduce the ratio

r(v) =
µv(0)

µv(1)
,

associated with each passed message, and also its natural logarithm

L(v) = ln
µv(0)

µv(1)
,

which are respectively called likelihood and log-likelihood ratios. Each of these values

can replace the general form of the message without the loss of generality.

16

Algorithm 1.1 Belief propagation algorithm on a tree
Input: Factor tree T of a function g rooted in v = xi

Output: µv(xi) = g(xi), marginal function of g with respect to the variable xi

1. Initialize leaf nodes as follows: µv(xl) = 1, for variable nodes v = xl, and µv(xl) = fj(xl),
where v = fj is a factor node and child of xl.

2. if all the children of the unprocessed parent node xv are processed, do

(a) if v = xl is a variable node, set

µv(xl) =
∏

f is a child of v

µf (xl),

(b) if v = fj is a factor node, child of xl, set

µv(xl) =
∑
∼xl

fj(yj)
∏

u is a child of fj

µu(u).

The BP algorithm on trees is given in Algorithm 1.1 (cf. Appendix A). Let us now

explore the variable and factor node message updates according to this algorithm for

this simpli�ed setting of decoding of binary linear codes. For a variable node v, the

message to be passed to its neighbouring factor node f can be calculated by pointwise

multiplication

µv(0) =
∏

h∈N(v)\{f}

µh(0), µv(1) =
∏

h∈N(v)\{f}

µh(1) (1.12)

over all neighbouring nodes h of v excluding f .

Thus, in terms of the likelihood ratios, variable node update is simply:

r(v) =

∏
h∈N(v)\{f} µh(0)∏
h∈N(v)\{f} µh(1)

=
∏

h∈N(v)\{f}

r(h),

while for the log-likelihood ratios, the processing rule becomes the sum-rule:

L(v) = ln

 ∏
h∈N(v)\{f}

r(h)

 =
∑

h∈N(v)\{f}

L(h). (1.13)

Let us now consider the factor node update in the likelihood ratio form. Since all

the factor nodes associated to the factors of the form PYj |Xj
(yj|xj) (or PZj |Yj

(zj|yj)

in generator matrix representation) are single-variable factors, i.e., the leaves, their

messages are trivial. Hence, we need to consider only those factor nodes correspond-

ing to the indicator factors of the form χ{hi·x=0} (or χ{gi·x=yi} in generator matrix

17

representation). These nodes are called simply parity check nodes in parity check

matrix representation or output nodes in generator matrix notation. Consider a par-

ity check node f associated to some parity check matrix row hj. Its set of arguments

is restricted to x|supp(hj), and the message to be passed to its neighbour i ∈ supp(hj)

in the likelihood ratio language can be expressed as:

r(f) =

∑
∼xi

f(xi = 0,x|supp(hj))
∏

j∈N(f)\{i} µj(xj)∑
∼xi

f(xi = 1,x|supp(hj))
∏

j∈N(f)\{i} µj(xj)
=

=

∑
xj :

⊕
j xj=0

∏
j∈N(f)\{i} µj(xj)∑

xj :
⊕

j xj=1

∏
j∈N(f)\{i} µj(xj)

.

If we divide both the numerator and the denominator by the product
∏

j∈N(f)\{i} µj(1),

after simple transformations, we obtain:

r(f) =

∏
j∈N(f)\{i}(r(j) + 1) +

∏
j∈N(f)\{i}(r(j)− 1)∏

j∈N(f)\{i}(r(j) + 1)−
∏

j∈N(f)\{i}(r(j)− 1)
, (1.14)

which can be further simpli�ed to:

r(f)− 1

r(f) + 1
=

∏
j∈N(f)\{i}

r(j)− 1

r(j) + 1
. (1.15)

Now, by inserting r(f) = exp(L(f)), factor node update is simpli�ed to tanh-rule:

tanh
L(f)

2
=

∏
j∈N(f)\{i}

tanh
L(j)

2
. (1.16)

Thus, we have derived the sum-rule (1.13) and the tanh-rule (1.16) message update

rules for the belief propagation algorithm for decoding of binary linear codes over

BIMS channels. These equations are the base for the decoding implementation of

choice for LDPC, LDGM and fountain codes.

18

Chapter 2

Fountain codes: state of the art

2.1 Digital Fountain Paradigm

2.1.1 Multicast/Broadcast setting

Imagine thousands of users listening to a packetised data transmission from a broad-

caster, i.e., one sender has some data partitioned in a number of packets - binary

vectors of some �xed length - to communicate to many receivers. Transmission oc-

curs over a loss-prone data network and many receivers will typically not be able to

receive all the data packets which were transmitted. It is easy to imagine such a

scenario: users may, for example, be the vehicles receiving navigation updates from

a satellite. In such case, packets would be lost whenever a car is in deep signal fade -

or in a tunnel. Otherwise, there could be an enormous number of mobile subscribers

to a popular digital video content, each of them experiencing some packet loss due

to signal degradation, network congestion or faulty hardware.

Even if there are feedback channels in such setting which could be utilised to notify

the broadcaster of the missing packets, identify them and request their retransmis-

sion, the transmission of packets in an uncoded sequence results in a rather ine�cient

scheme. In these approaches, often called Automatic Repeat reQuest (ARQ), the sys-

tem throughput degenerates as the number of receivers becomes large. Indeed, if each

of the hundreds of thousands of receivers drops only a small fraction of packets and

requests their retransmission, chances are that every packet must be retransmitted,

and that the broadcaster will need to repeat the entire transmission several times.

This phenomenon is typically called feedback implosion [45, 46].

19

The above setting can be modelled by a broadcast packet erasure channel - ef-

fectively a collection of many instances of a variation of binary erasure channel [40].

Let us assume that the broadcaster needs to communicate a certain message of k

packets to a large number of receivers. Each receiver j ∈ Nr, where r is the number

of receivers, correctly receives a certain fraction (1−p(j)
e) of all the transmitted pack-

ets. Here, p(j)
e is the instantaneous packet loss rate observed by the j-th receiver. In

order to avoid feedback implosion, we require some form of channel coding mecha-

nism applicable for erasure channels. Classical coding scheme for recovering erasures

are Reed-Solomon codes [47, 48], employed in a variety of commercial applications,

most notably in data storage as a key component of compact disks. In coding theory,

Reed-Solomon codes are an example of Maximum Distance Separable (MDS) codes

which achieve the Singleton bound [49]. This e�ectively means that an (n, k) Reed-

Solomon code provides the reliable reconstruction of the original k message symbols

over an alphabet of size q = 2l(which can be viewed as the message packets of l bits),

when any k out of n transmitted encoded symbols are received. Thus, Reed-Solomon

codes enable the receivers which observe the instantaneous packet loss rates p(j)
e given

by (1−p(j)
e) ≥ k/n to successfully recover the original message, whereas the receivers

with higher packet loss would still require some form of retransmission mechanism.

Thus, there is an obvious drawback if the packet erasure rates change dynamically:

we need to be able to estimate these rates before the transmission and modify the

code rate k/n and, thus, the number of transmitted packets n, accordingly. This is

not a drawback of Reed-Solomon codes, which are even optimal in recovering erasures

when channel conditions are known and static, but of the entire approach of encoding

the data by a �xed code rate scheme. Namely, even in the unicast scenario, a �xed

channel code rate leads to the bandwidth waste if the erasure rate is overestimated

or it simply fails when the erasure rate is underestimated.

In addition, Reed-Solomon codes are impractical for large values of k, as their

computational complexity with standard decoding algorithms isO(k(n−k) log n) [50].

This is a prohibitive computational complexity for much of the range of multicast and

broadcast scenarios we would like to address. For example, computational resources

and battery power of a mobile device are limited and, therefore, a low complexity

20

implementation of decoding scheme in such a device may well be one of the key

prerequisites for the wide scale deployment of a particular error correction technology.

Thus, when faced with the problem of multicast transmission, the coding community

was bound to look for coding solutions which seamlessly adapt the information rate,

but which are also aligned with the paradigms of modern coding theory. Soon,

fountain codes [51, 52] would be born.

In order to avoid the necessity to modify the encoding scheme whenever condi-

tions in a loss-prone network change, the idea of a digital fountain [53] arose rather

naturally. The digital fountain encoder should be able to produce an endless supply

of encoded packets per message of length k - these packets are then just sprayed

across the network, and each receiver simply keeps on collecting them until their

number k′ reaches some threshold larger than k. They can then attempt the recon-

struction of the original message, and a judicious choice of encoding scheme should

be the one that provides high probability of successful reconstruction when k′ is only

marginally larger than k. In such schemes, no feedback is ever required. As long

as the broadcaster is aware that some users are listening to the broadcast, it can

keep generating encoded packets. It takes some subtlety to note that digital fountain

approach requires a shift in the classical channel coding paradigm.

Unlike the classical encoder that maps the messages into the codewords and oper-

ates at some code rate, which describes the communication e�ciency of the reliable

transmission, digital fountain encoder is rateless: it can create a su�ciently large

number of encoded packets to support arbitrarily high packet loss rates. In fact,

it simultaneously supports both extremes of packet loss rates, since the users with

low packet loss can collect their packets very quickly and tune out of the broadcast.

Furthermore, digital fountain paradigm assumes that each produced encoded packet

is equally useful to the receiver. This allows each user to listen to the broadcast

asynchronously - tuning in and out as he chooses. Such property of asynchronous

data access (ADA) [54, 55] allows, for example, that when a vehicle listening to a

satellite transmission enters the tunnel, it can simply continue receiving useful data

at the exit, as the new packets will be equally important as the missed ones.

The introduced digital fountain formalism can easily be extended to the unicast

21

or broadcast channels of di�erent nature, i.e., noisy rather than erasure channels.

For example, let us model the channel C between the transmitter and a receiver as

some BIMS channel such as binary symmetric channel (BSC) or binary input additive

white Gaussian noise channel (BIAWGNC). In this case, the receiver keeps observing

the channel outputs corresponding to the distinct encoded symbols, until it collects

a su�cient number of them to allow successful decoding of the original message.

The number n of the observed noisy encoded symbols which su�ce for the successful

decoding would ideally be close to k/Cap(C), where k is the number of bits in the

original message and Cap(C) is the Shannon capacity of the channel C measured

in bits, i.e., the realised rate k/n would ideally be close to the channel capacity.

Again, it should not matter at which point the receiver tunes in onto the ongoing

broadcast, as it observes equally important descriptions of the message distorted by

a stationary memoryless channel. Thus, the users still bene�t from the asynchronous

data access and the extremes of both very poor and nearly perfect channel conditions

are supported with a single encoding scheme.

From the information theoretic perspective, another shift is in order. In the broad-

cast/multicast setting, the amount of transmitted data is necessarily dictated by the

users with the worst channel conditions. Thus, the rate should be penalised at each

receiver separately, rather than at the transmitter side. These ideas are elaborated in

[56], where the notion of fountain capacity has been de�ned such that the rate is pe-

nalised by the reception of encoded symbols at the receiver rather than the use of the

channel by the transmitter. It has been shown there that for stationary memoryless

channels, fountain capacity su�ers no rate loss compared to Shannon capacity.

To conclude, in multicast and broadcast setting, we deal with a fundamentally

di�erent coding theoretic and information theoretic problem. To frame it in di�erent

words, we are dealing with the problem of reproducing at many points simultaneously

either exactly or approximately a message selected at another point, where such

points are often connected to the transmitter via possibly di�erent medium, and

consequently, di�erent channel capacities.

22

2.1.2 Fountain codes and binary linear fountain codes

Regardless of the underlying channel model, any coding scheme that potentially sup-

ports the reliable multicast transmission without feedback communication, and at

the same time enables the receivers to bene�t from the asynchronous data access,

must satisfy two basic properties:

• ratelessness : encoder can create an arbitrarily large number of encoded symbols;

this way, heterogeneous channel conditions can be supported.

• equal importance of encoded symbols : on large scale, each encoded symbol should

be an equally important description of the message as any other encoded symbol;

this way, in the case of erasure channels, any pattern of loss of encoded symbols

is supported and the receivers can bene�t from virtually any encoded symbols

they observe.

Based on the above properties, we can identify the fountain coding scheme for an

arbitrary channel model with a probabilistic process that assigns to the message an

in�nite sequence of encoded symbols, all of which are the evaluations of an indepen-

dently selected function of the message. This is summed up in the following general

de�nition of a fountain code ensemble (note that this de�nition di�ers from the de�-

nitions of fountain codebook and fountain code library from [56], which enforce only

the property of ratelessness):

De�nition 6. Let X ,Y be the message symbol alphabet and the encoded symbol

alphabet respectively, and let M be a set of functions m : X k → Y , for some k ∈ N,

such that there exists some probability distribution π on M. Fountain code ensemble

is a family of maps:

fk,X ,Y,M,π : X k → Y∞,

fk,X ,Y,M,π(x) = (m1(x),m2(x), . . . ,mj(x), . . .), ∀x ∈ X k (2.1)

where each of the functions m1(x),m2(x), . . . ,mj(x), . . . is chosen i.i.d. from the

family M according to π.

23

Fountain code ensemble can be identi�ed either with this family of maps or with

the probability distribution π on M, which is a recipe to generate any such map. Par-

ticular fountain encoder on a �xed message x̄ ∈ X k of k symbols is then a map from

the fountain code ensemble evaluated at x̄. Thus, the generation and the transmission

of the j-th encoded symbol, yj ∈ Y , j ∈ N, proceed in two simple steps:

• Sample function mj(x) from the family M according to π.

• Calculate and transmit yj = mj(x̄).

There is a subtlety in the randomness inherent in our choice of the particular foun-

tain encoder, i.e., a particular random map from the fountain code ensemble. The

decoder which observes the channel outputs which correspond to a certain number

n of distinct encoded symbols, i.e., yi1 = mi1(x̄), yi2 = mi2(x̄), . . . , yin = min(x̄),

where ia 6= ib whenever a 6= b, obviously has to know which speci�c functions

mi1(x),mi2(x), . . . ,min(x) were selected from the family M to generate these encoded

symbols in order to be able to deduce the actual message x̄ from their (possibly dis-

torted by the channel) values at x̄. This is achieved by assuming that, in addition to

agreeing on parameters k,X ,Y ,M,π, the encoder and the decoder are equipped with

the same pseudo-random number generator (with the synchronised seed). When exe-

cuted, this pseudo-random number generator produces the same sequence of functions

m1(x),m2(x), . . . ,mj(x), . . . at the encoder and the decoder.

In the case of a binary linear fountain coding for BIMS channels, we have that

X = Y = F2 and each function in M is of the form m(x) = v · x, ∀x ∈ Fk2, for some

row vector v ∈ Fk2. Thus, the fountain code ensemble is fully described by a random

variable V on Fk2, as follows:

De�nition 7. Let k ∈ N and let V be a random variable on Fk2. Binary linear

fountain code ensemble Fk,V is a family of maps:

fk,V : Fk2 → F∞2 , (2.2)

fk,V : (x1, x2, . . . , xk) 7→ (y1, y2, . . . , yj, . . .), (2.3)

24

��
���

��
���
	

�

00101001
data packet 1

10100111
data packet 2

00101010
data packet 3

10100010
data packet 4

01101011
data packet 5

11011111
data packet 6

XOR
11100110

encoded packet j

encoded packet j+1

encoded packet j-1

���
���

...

00001111
data packet k

data packet 6

�������������
����	
��� ���
�������
������

Figure 2.1: Fountain coding performed on a block of data packets

such that:

yj = vj · x =
⊕

i∈supp(vj)

xi, j ∈ N, (2.4)

where
⊕

denotes modulo 2 addition, i.e., the logical XOR operation, and v1,v2, . . .

are i.i.d. realisations of V.

Two simple examples of binary linear fountain code ensemble are random linear

fountain, where V = U is uniform on Fk2 and LT (Luby Transform) code ensemble,

where V takes on a vector of Hamming weight d with probability Ωd. The next

Section will discuss and analyse LT code ensembles in more detail.

Example 8. (Random linear fountain Fk,U). In this case, U is uniform on Fk2, i.e.,

PU(u) =
1

2k
, u ∈ Fk2. (2.5)

Example 9. Let D be a random variable on Nk with the probability mass function

PD(d) = Ωd, d ∈ Nk. De�ne V with

PV(v) =
Ωw(v)(

k
w(v)

) ,
where w(v) is Hamming weight of v. Then, Fk,V is an LT code ensemble induced by

D.

Most of the results concerning binary linear fountain coding can be extended to

fountain coding over message symbol alphabet X = Fb2, b ≥ 2, on packet erasure

channels, i.e., where channel input alphabet is also Y = Fb2 and the channel output

either exactly coincides with the channel input or is given by a special erasure indica-

25

tor ∗. It is su�cient to let logical XOR operation in 2.4 be performed bit-wise. The

fountain code ensemble is still characterized by the blocklength k ∈ N and a random

variable V on Fk2. In this case, symbols xi ∈ Fb2, i ∈ Nk, are referred to as data

packets, whereas the encoded symbols yj ∈ Fb2, j ∈ N, are referred to as the encoded

packets. This is illustrated in Fig. 2.1 in the case where b = 8, i.e., the message

consists of k bytes (octets of bits). At the j-th time slot, the encoder simply samples

the random variable V on Fk2 and in this case obtains a vector which contains zeroes

only in the positions 2, 3 and 5. This means that the j-th encoded packet is obtained

by bitwise XOR-ing data packets 2, 3 and 5 as depicted in the �gure.

The next section will show how, in the case of the packet erasure channels, the

code design and analysis of binary linear fountain coding can be directly applied to

fountain coding for packet erasure channels.

2.2 LT codes

2.2.1 De�nition and properties

LT (Luby Transform) codes [57, 58, 51] are the �rst class of fountain codes fully

realising the digital fountain paradigm. LT codes are binary linear fountain codes and

the only two parameters of an LT code ensemble LT (k,Ω(x)) are the length k of the

message and a certain discrete probability distribution Ω on the set Nk = {1, 2, . . . , k}

of non-zero weights in message symbol alphabet Fk2. We will call distribution Ω the

output degree distribution, and its associated random variable D on Nk, the output

degree, for reasons that will become clear later. The output degree distribution of

an LT code ensemble will, unless stated otherwise, be identi�ed with its generating

polynomial, given by:

Ω(x) =
k∑
d=1

Ωdx
d (2.6)

where Ωd is the probability that a particular d ∈ Nk is selected. Degree distribution

Ω(x) induces a probability distribution on the set of linear maps m : Fk2 → F2, which

is isomorphic to Fk2, as m(x) = v ·x, ∀x ∈ Fk2, for some v ∈ Fk2. Namely, the weight D

of an associated random variable V on Fk2 is distributed according to Ω(x), whereas

26

Algorithm 2.1 LT encoding algorithm
Input: message x = (x1, x2, . . . , xk), probability distribution Ω on Nk

Output: an encoded symbol y

1. Sample an output degree d with probability Ωd,

2. Sample d distinct message symbols xi1 , xi2 , . . . , xid uniformly at random from the message
(x1, x2, . . . , xk) and XOR them, y =

⊕d
j=1 xij .

we let the vectors of equal weight be equally likely. In other words,

PV(v) =
Ωw(v)(

k
w(v)

) ,
where w(v) is Hamming weight of v ∈ Fk2. According to the fountain encoding rules

outlined in the previous section, we can now summarize the generation of a single LT

encoded symbol in Algorithm 2.1.

The steps of Algorithm 2.1 can be performed as many times as necessary in order to

produce enough encoded symbols for successful decoding. Furthermore, each encoded

symbol is generated by the same encoding process and thus any set of randomly chosen

encoded symbols represents an equally important description of the message symbols

as any other set of encoded symbols of the same size.

LT code ensembles hold two major bene�ts compared to the general binary lin-

ear fountain code ensembles. Firstly, the code design is greatly simpli�ed - instead

of storing and sampling a probability distribution on Fk2 (which is computationally

prohibitive for large k), the code designer needs only to specify the set of k numbers

describing the output degree distribution Ω(x). Secondly, it is possible to select the

output degree distribution in such a way that the decoding of an LT code is possible

with a version of a computationally e�cient belief propagation algorithm. The next

subsections discuss the decoding algorithm of LT codes and techniques of selecting

appropriate code parameters.

2.2.2 Decoding algorithm

The decoding of an LT code utilises a belief propagation (BP) algorithm on the factor

graph of the linear encoder Fk2 → Fn2 obtained by the restriction of the fountain

encoder map to exactly those n coordinates in the fountain encoded stream observed

27

Algorithm 2.2 LT decoding algorithm for BEC
Input: channel output z ∈ Zn, factor graph G

G
[1:n]
LT

representing the active n rows in the LT gener-
ator matrix.

Output: message x ∈ X k (or an indicator 0 that the decoding has failed)

1. assign an all-erasures vector x to variable nodes, xi = ∗, i ∈ Nk.
2. while x has at least one erased sample xj = ∗ do

(a) �nd an unerased output node a, za 6= ∗, connected to exactly one erased variable
node i, xi = ∗,

(b) if there is no such output node return 0 (decoding fails)
(c) else

i. set xi = za, za = ∗;
ii. set zb = zb ⊕ xi, ∀b ∈ N (i);

(d) end if

3. end while

4. return x

at the receiver. This factor graph has the incidence matrix formed by n �active� rows

of the LT generator matrix which correspond to n observed encoded symbols.

Consider LT codes for transmission over a binary erasure channel. The channel

output alphabet Z = {0, 1, ∗} contains an erasure symbol ∗ in addition to the ele-

ments of message symbol alphabet X = F2. Then, BP algorithm simpli�es to the

peeling decoder [32], which is presented in Algorithm 2.2.

The close inspection of the peeling decoder leads to the conclusion that exactly

the same decoding algorithm can be applied over binary vectors of �xed length, i.e.,

when the message symbol alphabet is X = Fb2, for b ≥ 2. In this case, the channel

output can exactly coincide with the encoded packet at the channel input or return

a special erasure indicator ∗. Thus, with the message symbol alphabet X = Fb2 and

channel output alphabet Z = Fb2 ∪ {∗}, the same decoding algorithm rules hold by

employing the bitwise XOR operation where modulo 2 addition occurs. This means

that it is su�cient to construct good binary linear fountain codes, whereupon the

same code design and analysis can be applied to fountain coding for packet erasure

channels.

The obvious necessary condition for the successful decoding with Algorithm 2.2

is that every input node in factor graph G
G

[1:n]
LT

is connected to at least one output

node. Let us estimate the expected number of edges which satis�es this condition.

In order to do so, let us review a simple exercise in probability, referred to as the

28

coupon collector's problem.

Let k objects, i.e., coupons, be drawn repeatedly uniformly at random. Let us

denote the sample size required to collect n out of k coupons by Sn. Coupon collector's

problem consists in calculating the average sample size E[Sk] required to collect all

coupons. By linearity of expectation, we can write:

E[Sk] = E[s1] + E[s1] + · · ·+ E[sk], (2.7)

where si is the sample size required to collect the i-th coupon after i− 1 coupons

have already been collected. For each trial after i − 1 coupons have already been

collected, probability of discovering a new coupon is pi = k−i+1
k

, whereupon si follows

geometric distribution with mean 1/pi. Now, (2.7) becomes:

E[Sk] = k(
1

k
+

1

k − 1
+ · · ·+ 1) = kHk, (2.8)

where Hk is the k-th Harmonic number. As Hk = k ln k + γk + o(1/k), where

γ ≈ 0.5772 is the Euler's constant, E[Sk] ∝ k ln k.

For the more detailed discussion of coupon collector's problem, cf., e.g., Section

2.2 of [59].

By a variation of the above arguments where input nodes represent coupons and

each drawing from the set of coupons is corresponding to an edge in G
G

[1:n]
LT

, the

expected number M of edges on the decoding graph needs to grow at least as Hk =

O(k ln k). There is another intuitive explanation of this fact: since message symbols

are sampled uniformly and independently, probability that a particular input node is

not incident to any output node is (1− 1
k
)M which is for large k,M well approximated

by e−M/k. Hence, the expected number of unused input nodes is ke−M/k. This number

has to be much less than 1 and so:

ke−M/k < 1⇒M > k ln k.

We will see in the following that there exist sequences of output degree distribution

which meet this lower bound of O(k ln k) edges, while providing with probability

of successful BP decoding arbitrarily close to one, at rates arbitrarily close to the

29

channel capacity on any erasure channel.

2.2.3 Soliton distributions

Consider the following degree distribution:

De�nition 10. The ideal soliton distribution Ψ(k)(x) on Nk is given by:

Ψ
(k)
i =

{
1/k, i = 1,

1
i(i−1)

, 2 ≤ i ≤ k.
(2.9)

Whenever the peeling decoder is succesful, it proceeds in k iterations, recovering

one message symbol at each iteration. Let ξ(t, d) be the number of output nodes

in the decoding graph of degree d, d ∈ Nk, after the t-th iteration, t ∈ Nk. Thus,

at every iteration, we require ξ(t, 1) > 0 to decode a new message symbol. The

following propositon is a simpli�ed version of a result by Luby [51] which states that

the peeling decoder of the ideal soliton distributed LT code ensemble LT (k,Ψ(k)(x))

will, in expectation, recover the entire message, when only n = k encoded symbols

are observed at the receiver.

Proposition 11. The following relations hold for the ideal soliton distributed LT

code ensemble LT (k,Ψ(k)(x)):

E[ξ(t, 1)] = 1,

E[ξ(t, d)] =
k − t

d(d− 1)
,

where 0 ≤ t ≤ k, 2 ≤ d ≤ k.

Proof. We use induction by t. Initially, for t = 0, E[ξ(0, d)] = Ψ
(k)
d n, and hence

E[ξ(0, 1)] = n/k = 1,

E[ξ(0, d)] =
k

d(d− 1)
, d ≥ 2.

Let us assume the relations are true for some t ≥ 0. Then, ξ(t + 1, 1) is equal to

the number of output nodes that had degree 2 after iteration t, and were incident to

the input node decoded at iteration t+ 1 (thus, their degree was decreased by one).

The decoded node was one of the previously undecoded k − t nodes, whereby the

30

probability that a random node of degree 2 after iteration t was connected to it is

2/(k − t), leading to:

E[ξ(t+ 1, 1)] = E[ξ(t, 2)]
2

k − t
= 1,

by induction hypothesis. On the other hand, ξ(t+ 1, d) is the number of check nodes

which either had degree d after previous iteration and were not incident to the last

decoded node, or which had degree d + 1 and had one edge erased since they were

incident to the last decoded node. It follows that:

E[ξ(t+ 1, d)] = E[ξ(t, d)](1− d

k − t
) + E[ξ(t, d+ 1)]

d+ 1

k − t
,

which is by induction hypotheses equal to

E[ξ(t+ 1, d)] =
k − t

d(d− 1)
(1− d

k − t
) +

k − t
(d+ 1)d

d+ 1

k − t
=
k − t− 1

d(d− 1)
,

which completes the proof.

However, the ideal soliton distribution performs rather poorly in practice, and

the ideal soliton distributed LT code ensembles exhibit a rather sensitive bahaviour:

number of singly connected output nodes is one in expectation at each iteration,

and whenever it becomes zero prior to the decoding completion, decoding fails. In

other words, the peeling decoder fails whenever at some iteration t, ξ(t, 1) becomes

0. Nonetheless, we are on the right track in unveiling the degree distributions that

comply well with the BP decoding algorithms.

In [51], Luby introduced the following modi�cation of the ideal soliton distribution,

the robust soliton distribution.

De�nition 12. Let Ψ(k)(x) be the ideal soliton distribution on Nk, �x c > 0, and

δ ∈ (0, 1). Let:

T
(k,c,δ)
d =


R/(ik), 1 ≤ d ≤ k

R
− 1,

(R/k) ln(R/k), d = k
R
,

0, k
R

+ 1 ≤ d ≤ k,

(2.10)

where R = c
√
k ln k

δ
. Robust soliton distributionΨ(k,c,δ)(x) =

∑k
d=1 Ψ

(k,c,δ)
d xd on Nk

31

with parameters c and δ is given by:

Ψ
(k,c,δ)
d =

1

β
(Ψ

(k)
d + T

(k,c,δ)
d),

where β = Ψ(k)(1) + T (k,c,δ)(1) is the normalizing constant.

The robust soliton distribution has a characteristic spike at d = k
R
, induced by

the distribution T (k,c,δ)(x). In a way, the robust soliton distribution is a simple mod-

i�cation of the ideal soliton distribution which ensures that the �uctuations around

the expected behaviour do not interfere with the success of the decoding process.

Namely, it is designed such that the expected number of degree-one output nodes is

R = c
√
k ln k

δ
rather than 1 throughout the decoding. The parameter δ is the bound

on the probability of the decoding failure, whereas c is a suitably chosen constant,

typically with a value smaller than 1 (cf. [51] for the rigorous interpretation of these

parameters).

Luby's key result in [51], showed that any k + O(
√
k ln2 k) encoded symbols are

su�cient to successfully recover the message of length k with probability at least 1−δ.

Since, it has been demonstrated [50] that actual decoding failure is much smaller than

the bound δ, predicted by Luby's analysis. In addition, the robust soliton distributed

LT code ensembles have low encoding-decoding complexity of O(k ln k
δ
) XOR oper-

ations. Thus, the robust soliton distributed LT code ensembles achieve capacity of

a binary erasure channel of any erasure probability, i.e., they are universal code en-

sembles for the erasure channels, and they have exceptionally low computational cost

of encoding and decoding.

2.3 Raptor codes

Raptor codes were introduced by Shokrollahi in [60, 52, 61] as a concatenation of

an LT code with a very high rate binary linear code C, typically a Low-Density

Parity-Check (LDPC) code. The proposal to concatenate an LT code with an outer

linear code came independently from Maymounkov with the introduction of Online

codes [62], aimed for information dispersal over peer-to-peer networks [63]. Raptor

ensemble is characterised by the triplet (k, C,Ω(x)), where C is a linear (k̄, k) code

32

RAPTOR ENCODER

LT encoder
(, ())LT k xΩ

Linear (,)k k

code C (LDPC)
message

2
k∈x F

2
k∈x F

precoded
message

encoded
stream

1 2(, ,...)z z=z

Figure 2.2: Raptor encoder diagram

of length k̄ and dimenson k, and Ω(x) generates a probability distribution on the set

Nk̄ = {1, 2, . . . , k̄}. In Raptor codes, Ω(x) is a light degree distribution - it is kept

capped at some maximum degree dmax as k → ∞. This lowers the computational

cost of the LT encoding and decoding algorithms constituent in Raptor codes to

O(k). However, the same fact introduces an error �oor - the LT decoders typically

cannot reconstruct the entire message block. Instead, the LT decoder can recover

only a certain fraction (1 − δ) of all the message symbols. The conceptual leap is

at this very fact - what if we require the decoder to recover only the fraction of the

message symbols because the set of message symbols already has a certain amount

of redundancy imposed on it? This is the role of a high rate LDPC code also called

the precode or the outer code, which is a constituent part of the Raptor encoder - it

provides su�cient redundancy to �nish o� decoding after the LT decoder terminates

when a certain fraction (1− δ) of the entire message is decoded. The Raptor encoder

with the block diagram given in Figure 2.2 performs the following tasks:

1. From the message symbols x = (x1, x2, . . . , xk), generate the LT input (pre-

coded) symbols x̄ = (x̄1, x̄2, . . . , x̄k̄) using a linear (k̄, k) code C.

2. From the LT input symbols x̄ = (x̄1, x̄2, . . . , x̄k̄), generate the stream of encoded

symbols z = (z1, z2, . . .) using an LT code ensemble LT (k̄,Ω(x)).

Typically, the outer code C will be systematic, i.e., x̄i = xi for i ∈ Nk, such that

the constituent LT decoder immediately attempts to recover the message symbols

x = (x1, x2, . . . , xk) appearing in the codeword x̄ = (x̄1, x̄2, . . . , x̄k̄).

The Raptor decoding graph is illustrated in Figure 2.3. The overall decoding

graph of the Raptor decoder consists of two kinds of factor nodes - dynamic factor

(output) nodes correspond to the observed encoded symbols, whereas static factor

nodes correspond to the parity check equations of the precode. In contrast to the

dynamic factor nodes, precode parity checks are not associated to any channel output

33

1z 2z 3z kz 1+kz 2+kz 3+kz… …

encoded symbols (dynamic output nodes)

1x 2x 3x kx… …
1kx + k

x

parity symbolsk message
symbols

…

precode parity checks
(static output nodes)

Figure 2.3: Raptor decoding graph

and thus have no associated codeword symbol variables. Nonetheless, it is often

useful to interpret them as the output nodes associated to a noiseless channel output

deterministically set to zero (cf. Section 2.5).

In [52], Shokrollahi showed the existence of Raptor codes with the universal capac-

ity approaching performance. Furthermore, Raptor codes have linear encoding and

decoding computational complexities and exhibit an exceptionally good performance

in practice. The following Lemma from [52] (which is given here without the proof

as it follows from standard analytical arguments discussed in the next Section) is the

key result on capacity approaching performance of Raptor codes:

Lemma 13. Let ε > 0 and let

dmax := d4(1 + ε)

ε
e, µ :=

ε

2
+
ε2

4
, (2.11)

Ω(x) =
1

µ+ 1
(µx+

dmax∑
i=2

xi

(i− 1)i
+
xdmax+1

dmax

). (2.12)

Any set of (1 + ε
2
)k + 1 encoded packets generated by LT (k,Ω(x)) is su�cient to

recover at least (1−δ)n data packets via belief propagation decoding, where δ = ε
4(1+ε)

.

In addition to (2.12) used for the analytical proofs, another useful constant average

degree distribution often used in the LT encoder constituent in Raptor schemes was

proposed by Shokrollahi in [52], and subsequently used in many other assessments of

di�erent aspects of the fountain coding performance, [3, 5, 64], to name a few. We

will refer to this degree distribution as Ωraptor(x). It is given by:

34

Ωraptor(x) = 0.0080x+ 0.4936x2 + 0.1662x3 + 0.0726x4 (2.13)

+ 0.0826x5 + 0.0561x8 + 0.0372x9 + 0.0556x19

+ 0.0250x65 + 0.0031x66.

2.4 Asymptotic analysis

2.4.1 And-Or Tree Analysis

The structure of the decoding graph, i.e., the choice of the degree distribution, de-

termines the performance of fountain codes. Unlike the irregular LDPC codes [32]

which have a pair of degree distributions (factor node and variable node degree dis-

tribution), asymptotic performance of an LT (k,Ω(x)) code ensemble is determined

by the choice of the output node, i.e., factor node, degree distribution Ω(x). By

construction, the input node, i.e., variable node, degrees follow binomial distribu-

tion on αk trials with probability 1/k, where α is the average input degree. It is

important to note that on any factor graph, both variable and factor node degree

distributions come in two di�erent ��avours�. There are standard variable (factor)

node degree distributions, which we denote by Λ(x) (Ω(x)), which simply tell what

is the probability that a randomly chosen variable (factor) node will have a certain

degree d - this probability is Λd (Ωd). We will refer to these degree distributions

as node-perspective degree distributions. Nonetheless, there are also edge-perspective

variable (factor) degree distributions, denoted by λ(x) (ω(x)), which can be viewed

as the probabilities that a randomly chosen edge in the factor graph will be inci-

dent to a variable (factor) node with a certain degree d - this probability is λd (ωd).

The relationship between these two perspectives of the degree distributions is given

by ω(x) = Ω′(x)/Ω′(1), and, reversely, Ω(x) =
´ x
0 ω(z)dz´ 1
0 ω(z)dz

. We will further adopt con-

vention that whenever an upper-case Greek letter denotes a node-perspective degree

distribution, corresponding lower-case Greek letter denotes its edge-perspective de-

gree distribution. As we will see, the edge-perspective degree distributions play an

important role in the asymptotic analysis of the belief propagation decoder.

In light degree distributions, the average input degree stays bounded as k →

35

∞, as αk = Ω′(1)(1 + ε)k, since both sides denote the number of edges on the

decoding graph. For large k, the input degree distribution can be approximated

by the Poisson distribution Λ(x) = exp(α(x − 1)). Such approximation leads to

the simple characterisation of the asymptotic behaviour of an LT ensemble with a

constant average degree distribution by a version of And-Or tree analysis [65]. The

Proof of the following Lemma is omitted, as we will prove it in a more general version

in the next Chapter (Theorem 22).

Lemma 14. The packet error rate of an LT(k,Ω(x)) ensemble with the average input

degree α, converges to y = liml→∞ yl as k →∞, where yl is given by:

y0 = 1,

yl = exp (−αω(1− yl−1)) , l ≥ 1. (2.14)

Another related result can be used to characterise the asymptotic performance

of LT codes. The following Lemma is due to Sanghavi [66] and it is more general

compared to Lemma 14 as it applies to all LT ensembles. It was adopted from

the study of hypergraph collapse [67] and it determines a necessary and su�cient

condition for a sequence of ensembles LT(k,Ω(k)(x)) to have a vanishing error rate at

code overhead ε, as k →∞.

Lemma 15. Let δk be the error rate of LT(k,Ω(k)(x)), k ∈ N, where degree distribu-

tions {Ω(k)(x)}k∈N converge pointwise to Ω(x). Then, at code overhead ε, δk → δ as

k →∞, where:

δ = sup{x ∈ (0, 1] : (1 + ε)Ω′(1− x) + log(x) < 0}, (2.15)

where such in�mum exists, and δ = 0 otherwise.

From the above Lemma, the packet error rate of LT (k,Ω(k)(x)) converges to zero

i� ∀x ∈ (0, 1]:

(1 + ε)Ω′(1− x) + log(x) ≥ 0. (2.16)

Thus, based on the Lemmas 14 and 15, we can conclude that the asymptotic

36

fountain code design problem consists in �nding a degree distribution Ω(x), which

satis�es (2.16) or an equivalent form

αω(1− x) + log(x) ≥ 0 (2.17)

on an interval x ∈ [δ, 1] for a desired packet error rate δ and at the minimum

possible code overhead ε. Alternatively, one could seek to minimise the packet error

rate δ at a �xed code overhead ε, such that (2.16) and (2.17) are satis�ed. The latter

approach is pursued, e.g., in [3].

2.4.2 Linear programming optimisation

When optimising the degree distributions for LT codes, Lemma 14 can be transformed

into the linear programming routine (cf. Appendix B). Let us for the moment �x

the average input node degree α = Ω′(1)(1 + ε) and minimize the code overhead such

that the desired error rate δ is achieved. The choice of δ can, for example, be based

on the precoding scheme at our disposal. After some basic transformations, the code

overhead can be expressed in terms of the edge-perspective degree distribution ω(x)

as 1+ε = α
∑

d
ωd

d
. This is the linear function in ωd, d ∈ Ndmax . In addition, condition

(2.17) can be viewed as a linear constraint in ωd, d ∈ Ndmax for any �xed value of

x ∈ [δ, 1]. By discretising the interval [δ, 1], we obtain a series of linear programs

LP (δ, dmax,m) given by :

LP : minα
dmax∑
d

ωd
d

(2.18)

α
dmax∑
d=1

ωd(1− xi)d−1 ≥ − ln(x), i ∈ Nm,

ωd ≥ 0, d ∈ Ndmax ,
dmax∑
d=1

ωd = 1,

where δ = x1 < x2 < · · · < xm = 1 are m equidistant points on [δ, 1], δ is the

desired error rate, and dmax is the maximum degree of the degree distribution which

is being optimised. Recall that Ω(x) used in encoding operation can be determined

from ω(x) as Ω(x) =
´ x
0 ω(z)dz´ 1
0 ω(z)dz

. Also, note that the coe�cient α is, in fact, an arti�cial

37

parameter to the above linear program. Namely, we can allow variables ωd to sum

to an undetermined α, instead of 1. In that case, ω(x) is an unnormalized edge-

perspective degree distribution, and, in further, where appropriate, we will omit

parameter α from the formulation of the linear programs.

Depending on the choice of the desired error rate δ, the optimal values of the

objective function in 2.18 can be, and often are, less than one. This means that

the overhead values ε can be negative, which can appear rather counterintuitive.

Nonetheless, such design of LT codes does not require full reconstruction of the mes-

sage, but rather tolerates a certain error rate δ, i.e., out of k packets, only (1 − δ)k

are successfully reconstructed, for which, in the asymptotic regime, even less than k

encoded packets are su�cient at the decoder. This is typical of the case where LT

coding is performed on a set of k packets which already contains some redundancy,

i.e., it is precoded by a high-rate LDPC code, like in Raptor coding scenario. There,

the redundancy implies that the original message should be conveyed with less than

k encoded packets, i.e., with negative overhead.

In characterising the optimal degree distributions, the following result plays a key

role as it gives exactly the value of the maximum degree dmax su�cient to achieve

a �xed error rate δ. In its basic form su�cient for the standard LT codes, similar

result was proven by Sanghavi [66]. Nonetheless, we present the general result which

we will use in the subsequent Chapters when addressing the fountain code design for

decentralised coding problems.

Theorem 16. Let f(x) be a non-increasing non-negative function on [0, 1], let δ > 0,

and let d̄ = d̄(δ) be such that f(δ) ≤ d
d+1

. There exists a solution to

min
∑∞

i=1
ωi

i

ω(f(x)) ≥ − ln(x)

x ∈ [δ, 1], δ > 0, ωi ≥ 0, i ∈ N,

(2.19)

with ωj = 0, for j ≥ d̄+ 1, i.e., with the support of ω(x) restricted to Nd.

Proof. Assume ω(x) is the solution to (2.19) with possibly ωj 6= 0 for some j > d,

and de�ne φ(x) as follows:

38

φi =

{ ωi, i ≤ d− 1

d
∑

j≥d
ωj

j
, i = d

0, otherwise.

(2.20)

Clearly, φd ≥ 0, ∀d ∈ N. Furthermore, φ(x) is a feasible point of (2.19) since:

φ(f(x)) =
d∑
i=1

φi(f(x))i−1 =
d−1∑
i=1

ωi(f(x))i−1 + d(f(x))d−1
∑
j≥m

ωj
j
, (2.21)

and we claim that j(f(x))j−1 ≥ (j + 1)(f(x))j, ∀j ≥ d, ∀x ∈ [δ, 1]. This follows

from f(x) ≤ f(δ) ≤ d
d+1
≤ j

j+1
. In particular, d(f(x))d−1 ≥ j(f(x))j−1, ∀j ≥ d,

which when inserted into 2.21, gives φ(f(x)) ≥ ω(f(x)) ≥ − ln(x).

On the other hand, φ(x) is constructed such that the value of the objective function

remains the same, i.e.,

d∑
i=1

φi
i

=
d−1∑
i=1

ωi
i

+
d
∑

j≥d
ωj

j

d
=
∞∑
i=1

ωi
i
, (2.22)

which means that φ(x) is a solution to (2.19) with support restricted to Nd̄.

The above theorem allows us to formulate a dual linear program and thereby

bound the performance of any fountain code ensemble in a given setting. Typically,

we look at the dual program given by:

max
pZ

E[− lnZ] (2.23)

E[(f(Z))d−1] ≤ 1

d
, d ∈ Ndmax

Z ∈ [δ, 1].

where dmax > d̄(δ). This will be a recurring theme in the subsequent Chapters. In

case when f(x) = 1 − x, one obtains the dual linear programs used by Sanghavi to

characterise the intermediate performance of LT codes [66].

39

2.5 Fountain codes for noisy channels

2.5.1 Decoding algorithm

LT codes and Raptor codes have been adopted for transmission over a general noisy

binary input memoryless symmetric (BIMS) channel in [68]. The BP algorithm for

decoding of fountain codes over a general BIMS channel proceeds by performing the

sum-product message updates on the factor graph based on the n×k matrix G
[i1,i2,...,in]
LT

formed by the rows of the generator matrix corresponding to those encoded symbols

yi1 , yi2 , . . . , yin observed at the receiver. Every output node f , i.e., the one corre-

sponding to the Raptor encoded symbol, has a corresponding channel log-likelihood

ratio (LLR), i.e., intrinsic information, L(yf), derived based on the channel output

corresponding to the encoded symbol yf . In the case of Raptor codes, in addition

to the input nodes and the output nodes corresponding to the message symbols and

encoded symbols respectively, there are also static check nodes which correspond to

the parity check equations of the precode. These can typically be interpreted as the

output nodes with L(yf) = +∞ (cf. Raptor decoding graph in Figure 2.3). The

iterations, according to the sum-rule and the tanh-rule derived in 1.3, proceed as

follows:

m
(i)
v,f =

{
0, i = 0∑
g 6=f µ

(i−1)
g,v , i > 0

(2.24)

tanh(
µ

(i)
f,v

2
) = tanh(

L(yf)

2
)
∏
u6=v

tanh(
m

(i)
u,f

2
), (2.25)

where µ(i)
f,v (m(i)

v,f) are the messages passed from the output node f to the input

node v (from the input node v to the output node f) at the i-th iteration. After a

�xed number of iterations l, the LLR of the input node v is given by

L̂(x̄v) =
∑
g

µ(l)
g,v. (2.26)

These values of LLR can be used to make hard decision on the values of the LT input

symbols, i.e.,

40

x̄v =

{
0, L̂(x̄v) > 0,

1, L̂(x̄v) < 0.
(2.27)

In Raptor codes, the gathered LLR values L̂(x̄v) are used as the starting LLR

values (channel outputs) for the message passing rules performed subsequently in the

decoding graph of the precode (lower static portion of the Raptor decoding graph in

Figure 2.3).

2.5.2 Analytical tools and design

The BP decoder of the sparse graph codes is extensively analysed with the set of

tools collectively referred to as density evolution (DE) [32], which calculates density

functions of messages passed during the BP decoding algorithm. Some preliminary

density evolution equations for LDPC codes are already contained in Gallager's thesis

[24]. A variety of new analytical tools were introduced by Luby et al [65, 69] in

the study of coding schemes for erasure channels and many of the results for the

general channels are inspired by this work [32]. Density evolution has since been

vastly generalised, to analysis of Turbo codes [70], to nonbinary LDPC codes [71,

72] and to the asymmetric channels [73]. The density evolution approach can be

simpli�ed by the Gaussian approximation [74]. Gaussian approximation models all

the messages passed during the decoding algorithm as the consistent normal variables,

i.e., the normal variables whose variance is equal to twice their mean. However, a

more accurate analysis is possible with the semi-Gaussian approximation [75], which

was used in the fountain code design for noisy channels [68]. An alternative way

to analyse the performance of belief propagation decoder and aid the sparse graph

code construction, albeit based on very similar principles, is by using the EXtrinisc

Information Transfer (EXIT) charts [76].

The key result of the density evolution of fountain codes over a BIAWGNC with

the semi-Gaussian approximation can be summarised in the following Lemma. The

Lemma is presented in a somewhat modi�ed way compared to [68]. Again, we omit

the proof, as a more general result is proven in Section 3.4 (Theorem 26).

Lemma 17. Under the semi-Gaussian approximation and the all-zero codeword as-

41

sumption, the mean of the log-likelihood ratios in a belief propagation decoder for

LT (k,Ω(x)) ensemble with transmission over a BIAWGNC(σ) , as k → ∞, con-

verges to ν = liml→∞ νl, where νl is given by:

ν0 = 0,

νi,l+1 = 2α
dmax∑
d=1

ωdE

[
atanh

(
tanh

(Y
2

) d−1∏
t=1

tanh
(Mt

2

))]
, (2.28)

where Y ∼ N (2
σ2 ,

4
σ2) and Mt, t ∈ Nd−1, are the consistent normal variables with

mean νl, i.e., Mt ∼ N (νl, 2νl).

In [68], it has been shown that there are no universal LT nor Raptor code ensembles

for noisy channel models. Namely, for a given channel model, LT and Raptor code

ensembles cannot achieve capacity for all channel parameters, even for such simple

channel models like Binary Symmetric Channel (BSC). However, the authors of [68]

demonstrate that these codes nonetheless exhibit promising performance over both

the BSC and the BIAWGNC channel models and that they can be analysed and

optimised by the linear programming methods for a given channel model and given

channel parameters. More results towards the application of fountain codes for noisy

channels can be found in [77, 78, 79, 80].

2.6 Distributed, weighted and windowed constructions

The idea that random linear codes are exceptionally good channel codes in communi-

cation sense has been with us since Shannon [17]. Since a random matrix over a �nite

�eld with uniform i.i.d. entries has maximum rank with the overwhelming probabil-

ity [81], random binary linear codes can serve as an excellent fountain coding scheme

for recovering erasures! Of course, such coding schemes are utterly impractical, as

lack of any code structure prevents us from using an e�cient decoding procedure.

However, in recent years, there have been several results which show that even when

a large number of entries in the code generator matrix are zero, the main conclusions

still hold [82, 83]. This is a promising step forward as the sparseness of the gener-

ator matrix should intuitively foster the fast decoding. But how to distribute these

42

(occasional) non-zeros throughout the matrix? LT codes have given us the answer

with respect to the BP peeling decoding algorithm in the single source broadcasting

setting. Nonetheless, there are several di�erent scenarios which require a rateless

coding solution, and where we can proceed in a di�erent way, using insights that

original fountain coding ideas have given us.

Soon after the introduction of LT codes and Raptor codes as an exceptionally sim-

ple and robust forward error correction solution for the loss-prone networks, a number

of modi�cations and extensions of their code design and methodology, typically for

the particular practical scenarios, have appeared in the literature. In this section,

a brief discussion of these approaches is given. A generic fountain coding model

which contains all these modi�ed constructions of fountain codes will be presented in

Chapter 3.

2.6.1 Distributed LT codes

As fountain codes became well established in the single source broadcast/multicast

setting, a natural question arose: what happens if the multiple transmitters are broad-

casting data simultaneously? Several di�erent scenarios could be derived from this

idea, e.g., transmitters could have correlated data to transmit (distributed source

coding), or they could communicate to a common relay node allowed to combine

and forward packets. The idea of multiple source node disseminating correlated data

across the network is the recurring theme in this thesis and Chapter 3 is devoted to

this topic, as well as Section 5.6. On the other hand, in [14], the authors have intro-

duced the techniques of decomposing LT codes into distributed LT (DLT) codes for

independent encoding at the multiple source nodes which communicate to a common

relay. DLT codes can be used to encode data from the multiple sources independently

and after that a common relay combines encoded packets from multiple sources to

produce a bit stream approximating that of an LT code. The deconvolution of Ro-

bust soliton distribution was used to formulate the design of good DLT codes in the

cases of two and four sources. In [15] we have extended these results and derived the

asymptotic analysis for fountain coding in relay networks. These results are reported

in detail in Chapter 6.

43

2.6.2 Weighted LT codes

In LT codes, neighbours of each encoded symbol are drawn uniformly at random. A

straightforward generalisation of LT codes is the one where we allow the neighbours of

the encoded symbols to be selected according to a non-uniform distribution. This will

typically add bias towards some parts of the message and induce a di�erent behaviour

of the input degrees in the decoding graph. This idea was used in [3] to construct

rateless codes for unequal error protection (UEP). The message block was partitioned

into the classes of importance and the message symbols from the di�erent classes were

assigned di�erent probabilities of being drawn. The assignment of the probabilities

is done in such a fashion that the message symbols from the more important classes

are more likely to be chosen in the formation of the encoded symbols, resulting in

the UEP property. We refer to this approach as the Weighted LT coding and it will

be discussed in more detail in Section 4.2.

2.6.3 Windowed LT codes

Alternatively, LT codes can be generalised by assuming that the set of message sym-

bols is divided into a number of possibly overlapping subsets - windows, and that only

the message symbols from a predetermined window can be used in the formation of

each encoded symbol. Studholme and Blake were the �rst to utilise windowing ap-

proach in rateless codes, by introducing windowed erasure codes [84]. Their approach

aimed for short blocklength rateless codes with low encoding complexity and capac-

ity approaching behaviour assuming the maximum-likelihood (ML) decoding with a

version of Gaussian elimination. Targeting the real-time services such as multimedia

streaming, the sliding window fountain codes were proposed in [85]. The sliding win-

dow fountain codes move the �xed-sized window forward during the encoding process,

following the chronological ordering of data. For each window position, the number of

generated encoded symbols is considerably smaller than the number of encoded sym-

bols neccessary to successfully decode the window based on those symbols only, but

since the consecutive windows overlap, successful decoding at the receiver is still pos-

sible. Finally, windowed data set has been used in [4, 5] to construct rateless coding

schemes called EWF (Expanding Window Fountain) codes for unequal error protec-

44

tion. In EWF codes, windows are a prede�ned sequence of the strictly increasing

subsets of the data set, and a window is assigned to each encoded symbol according

to a certain probability distribution. While forming an encoded symbol, the message

symbols from the selected window are drawn uniformly. The input symbols in the

smallest window will have the strongest error protection, since they are contained

in all the windows and have chance to be selected in the formation of each output

symbol. EWF codes are one of our core contributions and will be presented, anal-

ysed and discussed in Section 4.3, whereas some considerations of their application

to scalable video multicasting are reported in Section 4.4.

2.7 Beyond channel coding

Soon after their principles were discovered, fountain codes were considered for various

source coding and distributed source coding problems. In [86], fountain codes are used

for the lossless data compression (of a single source) by utilising ideas from the lossless

data compression with LDPC codes [87]. The paper proposes a universal rate adaptive

lossless compression algorithm by concatenating the Burrows-Wheeler block sorting

transform (BWT) [88] with a fountain encoder, and using the closed-loop iterative

doping algorithm in conjunction with the belief propagation. The proposed scheme

exhibits competitive performance as compared to the state-of-the-art compression

algorithms. There were other contributions along these lines, concerned with text

compression [89] and decremental redundancy compression [90]. Furthermore, by

utilising the sense of operational duality (cf., e.g., [91] and references therein) of

the channel coding and the lossy source compression (quantisation), a rate adaptive

binary erasure quantisation scheme has been proposed in which dual LT codes and

dual Raptor codes are used [16]. This paper argues that whereas the majority of work

investigating the lossy source compression with sparse graph codes focuses on LDGM

codes, which arise naturally as the duals of good LDPC codes, by dualising fountain

codes, good LDPC codes for the lossy source compression may be constructed as well.

Furthermore, these dual fountain codes exhibit the sought after property to adapt

the rate on the �y, much in the same way as standard fountain codes.

In addition, [92] studies the problem of distributed source coding (DSC) with

45

Raptor codes, and it shows that it is possible to adapt systematic Raptor codes for

the DSC problem using a natural relation between channel coding and source coding

with side information. These methods where subsequently applied to hidden Markov

sources [64]. In [93], the authors consider the decoding algorithm when fountain codes

are used for the symmetric Slepian-Wolf coding (SWC) of two correlated sources. An

alternative approach to the construction of the rateless SWC schemes, which uses

layered LDPC codes, instead of fountain codes, is presented in [94]. Two indepen-

dent studies of fountain coding with side information which use the non-systematic

fountain codes in contrast to [92] were performed in [95] and [9]. It has been shown

that the parameters of the non-systematic fountain codes can be tuned to provide

both the distributed source compression gains and the channel coding gains in a sin-

gle coding scheme. Some of these methods have been utilised in the construction

of rateless coding schemes aided by feedback [96]. Distributed joint source-channel

fountain coding has also been a topic of interest [97, 98, 99]. We relegate a more

detailed discussion to Chapter 5, which is devoted to distributed source coding with

fountain codes.

2.8 Systematic Raptor AL-FEC

Today, fountain codes are a commercial product adopted as the standard for mobile

broadcast and IPTV service deployments by international standardisation bodies like

3GPP (3rd Generation Partnership Project), DVB (Digital Video Broadcasting) and

IETF (Internet Engineering Task Force) [100]. Digital Fountain, Inc calls their pro-

prietary DF Raptor technology �the world's most advanced forward error correction

(FEC) code for data networks�[100]. In this section, the systematic Raptor encoder

used within the application layer forward error correction (AL-FEC) solution adopted

for Multimedia Broadcast/Multicast Services (MBMS) within 3GPP [101] and for IP-

Datacast services within Digital Video Broadcasting for handheld devices (DVB-h)

[102] is overviewed. This section is di�erent from the rest, as it discusses an actual

implementation of the coding methodology rather than its formal design, analysis

and optimisation. However, we do not get into the details of the protocol realisation,

i.e., the proposed division of the data into blocks and packets. Rather, we simply

46

outline the encoding and decoding scheme from a generic message block, the choice

of precode and the generation of the encoded symbols.

2.8.1 Systematic Raptor codes

Although fountain codes are non-systematic by construction - encoded symbols are

simply the evaluations of random functions on the set of message symbols, we may

seek to employ systematic fountain codes in some applications. Direct access to the

original data can often be bene�cial and systematic codes provide this property -

the message symbols appear within the encoded symbols. These are two opposing

requirements - systematic encoded symbols are hardly random functions of the input.

However, the problem can be solved by an appropriate linear transformation of the

input performed before LT encoding step at the transmitter. This way, encoded

bitstream will still have all the properties of the digital fountain, as encoded symbols

will behave as the evaluations of random functions on a certain transformed set

of message symbols, called the intermediate symbols, and, in addition, the �rst k

encoded symbols, where k is the blocklength, will coincide with k original message

symbols. This way, users with good channel conditions observe the original data

directly, whereas the users which do not observe systematic symbols at all are still

able to reconstruct the set of the intermediate symbols from the rest of fountain

encoded bitstream, and thus indirectly recover the original message by inverting the

predescribed linear transformation.

For simplicity we will assume that the message sequence consists of k bits, i.e.,

symbols are elements of F2. The discussion remains valid when symbols are elements

of Fb2, b > 1, where mod 2 addition is exchanged with bitwise XOR operation. Let

x ∈ Fk2 be the vector of message symbols and let z[1:k] = G
[1:k]
LT GCx be the vector

of �rst k encoded symbols, where GC is an k̄ × k generator matrix of the Raptor

precode C, and G
[1:k]
LT is a k× k̄ matrix, formed by the �rst k rows of the LT generator

matrix. Then, GR = G
[1:k]
LT GC is a quadratic Raptor encoding matrix. If this matrix

is invertible, we can set x̂ = G−1
R x to be the new input processed by the Raptor

encoder. This way, �rst k encoded symbols will be the same as the message symbols:

47

z[1:k] = G
[1:k]
LT GCx̂ = x. (2.29)

The above is just an idea of realising a systematic fountain code. However, several

obstacles need to be confronted to enable a practical implementation of such a coding

scheme. Firstly, LT encoding needs to be predetermined in such a way as to ensure

that G
[1:k]
LT GC is an invertible matrix. Secondly, the invertion of GR and calculation of

x̂ is computationally prohibitive and precludes the linear computational complexity

of the encoding scheme.

A more practical realisation of systematic fountain encoder is presented in [101,

102]. Namely, the relationship between the message symbols x ∈ Fk2 and the set of

intermediate symbols x̄ = GCx̂ ∈ Fk̄2, where x̂ = G−1
R x, can be modelled by a k̄ × k̄

set of equations:

Hx̄ = 0, (2.30)

G
[1:k]
LT x̄ = x.

where H is the parity check matrix of the precode. When the encoder calculates

the intermediate symbols x̄, it can generate Raptor encoded symbols directly starting

from the LT part of the encoder. For example, the �rst n symbols of the encoded

bitstream are given by:

z[1:n] = G
[1:n]
LT x̄. (2.31)

Calculation of the intermediate symbols x̄ at the encoder is the task very similar to

the one performed by the Raptor decoder associated to this encoding scheme. Indeed,

when the decoder observes some k′ encoded symbols z[i1,i2,...,ik′] corresponding to the

rows i1, i2, . . . , ik′ of the LT encoding matrix, it solves the set of equations:

Hx̄ = 0, (2.32)

G
[i1,i2,...,ik′]
LT x̄ = z[i1,i2,...,ik′],

48

Systematic Raptor Encoder

x
[1:]k
LT

H

G

=
=

x 0

x x
xCCP

solves:
LT

generates:
[1:] [1:]n n

LTG=z x

lossy
network

Systematic Raptor Decoder

x
[*] [*]
LT

H

G

=
=

x 0

x z
x CCP

solves:

[1:]nz

[*]z
LT

generates:
[1:]k
L TG=x x

Figure 2.4: The block diagrams of the systematic Raptor encoder and decoder

to calculate the intermediate symbols x̄ and then perform the additional �encoding�

step

x = z[1:k] = G
[1:k]
LT x̄, (2.33)

which gives the message x ∈ Fk2 .

This fact is used in the construction of the encoding and the decoding apparatus

in [103, 104], such that both contain the same basic components, as illustrated in

Figure 2.4, a code constraints processor (CCP) which solves 2.30 and 2.32, and an

LT encoder which calculates 2.31 and 2.33.

2.8.2 Precode

The precode in the proposed scheme is a hybrid Half-LDPC systematic (k̄, k) linear

code. We start with k message symbols and add k̄−k = s+h parity symbols of which

s are generated by a left-regular LDPC code, while h parity symbols are generated

by Half precoding.

For given dimension k, the length of the precode can be determined from the

following relationships

a = min{ā ∈ N : ā(ā− 1) > 2k},

s = min{s̄ prime : s̄ ≥ d k
100
e+ a},

h = min{h̄ ∈ N :

(
h̄

d h̄
2
e

)
≥ k + s}.

For example, if k = 1024, we have s = 59 and h = 13, which yields a linear

49

(1096, 1024) precode of code rate 0.9343.

For a particular value of k, LDPC code constituent in the precoding is formed by

specifying in which parity check equations a particular message symbol appears. This

is equivalent to specifying the neighbours of a particular variable node in the factor

graph. The LDPC code used is a left-regular code with the variable node degree 3.

Namely, for the given message block x = (x1, x2, . . . , xk) ∈ Fk2, let us denote s LDPC

parity symbols by xk+1, xk+2, . . . , xk+s. Now, put

li = 1 + (bi− 1

s
c mod s− 1), i ∈ Nk,

The message symbol xi is now selected to be XOR-ed (amongst other message sym-

bols) when forming the following three parity symbols: xk+1+(i−1 mod s), xk+1+(i+li−1 mod s)

and xk+1+(i+2li−1 mod s). Since 1 ≤ li ≤ s−1 and since s is odd, all these parity symbols

are di�erent.

Example 18. Let k = 8. Then, a = 5, s = 7 and h = 6. From l8 = 1+(b7
7
c mod 6) =

2, a direct calculation �nds that the neighbours of the variable node corresponding

to the message symbol x8 correspond to the parity symbols x9, x11, x13.

Hamming/Half code is also formed by specifying the neighbours of a particular

variable node in the decoding graph. This portion of the precode is somewhat more

complicated, as it uses Gray sequences. Gray sequence is the sequence of numbers

in which each number di�ers from the previous one in a single bit position in their

binary representations and a particular Gray sequence used in this encoding scheme

is:

gi = i⊕ b i
2
c, i ∈ N,

where ⊕ is the bitwise XOR operation on the binary representations. Hamming-Half

encoding is also systematic and it is performed sequentially after the original LDPC

precoding, which means that it uses symbols (x1, x2, . . . , xk+s) as the input. The

encoding algorithm takes from the Gray sequence {gi}i∈N the �rst k + s elements

which have exactly h′ = dh
2
e non-zero bits in their binary representation. Denote

the binary representation of j-th such element by gh
′
j , j ∈ Nk+s. The symbol xj is

then selected to be XOR-ed (amongst others) when forming parity symbols xk+s+l

50

whenever the l-th bit from the right in gh
′
j is 1, l ∈ Nh.

Example 19. For k = 32, we have h = 8, i.e. h′ = 4. The �rst number in the

subsequence {g4
j}j∈Nk+s

is g4
1 = (g10)2 = 10 ⊕ 5 = (00001010)2 ⊕ (00000101)2 =

(00001111)2, which means that x1 is XOR-ed when generating x44, x45, x46 and x47

(note that k+ s = 32 + 11 = 43). The next number in the subsequence {g4
j}j∈Nk+s

is

g4
2 = (00011011)2, which means that x2 is XOR-ed when generating x44, x45, x47 and

x48 etc.

2.8.3 LT generator - source triples

We have seen that the crucial assumption in systematic Raptor design is that the

linear system 2.30 processed by the encoder has full rank k̄ over F2. This is possible

by accordingly predesigning the �rst k rows of the LT generator matrix for each

blocklength k - these are the rows that will eventually produce the systematic symbols.

For that purpose, the encoder and the decoder are equipped with a special pseudo-

random number generator. Its output depends on the two long pre-calculated arrays

V0 and V1. These arrays serve as a kind of database which forms so called source

triples, subsequently fed to the pseudorandom number generator. Source triples are

read from the arrays according to the current encoded symbol's identi�er (ESI), i.e.,

according to the position of a processed encoded symbol within the LT encoded

stream. They consist of the three non-negative integers dj, aj and bj, where dj is

the degree (sampled according to the carefully chosen output degree distribution) of

the encoded symbol zj, j ∈ N , i.e., the number of intermediate symbols which are

XOR-ed to produce zj, while aj and bj determine exactly which intermediate symbols

are chosen in the formation of zj. This is a limited randomness LT generator, cf.,

e.g., discussion in [105], which tries to mimic the uniform selection of the LT input

symbols in generation of the encoded symbols. LT generator adds successively aj

to bj modulo k̄′, the smallest prime number greater than k̄, and does this until it

determines dj distinct intermediate symbols. Namely, the encoder sets

zj = x̄i1 ⊕ x̄i2 ⊕ · · · ⊕ x̄idj
, j ∈ N, (2.34)

where i1, i2, . . . , idj
are the �rst dj distinct elements of the sequence

51

{(bj + l · aj mod k̄′) mod k̄}l∈N (2.35)

Hence, the entire encoding scheme is predetermined by the speci�cation of the

source triples {dj, aj, bj}j∈N. The appropriate selection of the arrays V0 and V1 ensures

that the �systematic� source triples {dj, aj, bj}kj=1 are such that the matrix of the linear

system 2.30 is invertible. The appropriate calculations have been performed for the

proposed protocols for all values of k from 4 up to 8192, and the proposed arrays V0

and V1 are available from the documents [101, 102].

52

Chapter 3

Decentralised Distributed Fountain

Coding

In this Chapter, we introduce a class of generic decentralised distributed fountain

coding schemes and present the tools of analysis of the performance of such schemes.

The aim of a decentralised distributed fountain coding scheme is to reliably recover the

data distributed across a set of nodes in a network, called the source nodes, at another

set of nodes, called the collector nodes, with minimal number of transmissions. In

our setting, we assume that each collector node seeks to recover a data sequence

x = (x1, x2, . . . , xk), consisting of k data packets xi ∈ Fb2, i ∈ Nk, which are vectors

of length b over F2, and that each source node in a network has access to a subset of

data sequence x. Furthermore, each source node is oblivious of which data packets

are available at other source nodes and the sets of packets available at di�erent source

nodes are not necessarily disjoint. Each source node uses a fountain code, i.e., an LT

or a Raptor code, to produce the encoded packets over its respective subset of data

packets and multicasts these encoded packets to the collector nodes. The challenge in

designing an e�cient and robust decentralised distributed fountain coding scheme lies

within the fact that source nodes do not cooperate and thus are not able to produce a

resulting bitstream resembling that of a good fountain code. Rather, they produce the

localised encoded packets, linear projections restricted to their respective subsets of

coordinates in data sequence x. However, we will show that by using an appropriate

generalised version of standard techniques for the analysis of sparse graph codes and

fountain codes, we can formalise a robust code design methodology for a number of

53

important instances of decentralised distributed fountain coding. It is useful for our

analysis to distinguish the case where collector nodes contain no apriori knowledge of

a portion of data sequence from the case where such side information at the collector

nodes is available and can be quanti�ed, and we will study these two cases separately.

The analysis introduced in this chapter will be a key ingredient in the study of some

special instances of the decentralised distributed fountain coding in the forthcoming

chapters. It is an interesting insight that for some typical single source multicast

fountain coding problems such as fountain codes for unequal error protection, it may

still be useful, for the brevity of code design and analysis, to study these problems as

decentralised distributed fountain coding problems.

3.1 Data collection with decentralised distributed LT encoders

Let k, b ∈ N, ε ∈ R, and n = dk(1 + ε)e. Let x = (x1, x2, . . . , xk) be a data sequence

of k data packets xi ∈ Fb2, i ∈ Nk that needs to be communicated to the collector

nodes. Assume that a collector node obtains a sequence y = (y1, y2, . . . , yn) of n

encoded packets, i.e., the code overhead available to the collector node is ε. However,

these encoded packets were produced in a decentralised fashion at a number s ∈ N

of source nodes. Furthermore, assume that each source node uses a weighted LT

code for the generation of the encoded packets and let LT encoder at the source node

j ∈ Ns use an output degree distribution

Ωj(x) =

d
(j)
max∑
d=1

Ωj,dx
d, (3.1)

where d(j)
max is the maximum degree of degree distribution Ωj(x). In addition to the

sequence of degree distributions (Ω1(x),Ω2(x), . . . ,Ωs(x)), we will capture various

properties of the decentralised generation of the encoded packets by a weighted com-

plete bipartite graph G = (A,B,Θ), illustrated in Figure 3.1. In G, nodes A =

{A1, A2, . . . Ar} represent a disjoint partition of Nk, such that ∀i ∈ Nr, |Ai| = πik,

for some πi ∈ [0, 1], and nodes B = {B1, B2, . . . Bs} represent a disjoint partition of

Nn, such that ∀j ∈ Ns, |Yj| = γjn, for some γj ∈ [0, 1], and Θ = (θji) is an k × n

matrix, such that θji ≥ 0 is the weight associated with the edge AiBj. The weights

54

k1π
1A

n1γ

…

…

1
1θ

classes of
raw data packets

2
1θ1

2θ
s

1θ
s
2θ

s
rθ

1
rθ

2
2θ

2
rθ

k2π
2A

krπ
rA

n2γ nsγn1γ
1B

…n2γ
2B

nsγ
sBclasses of

encoded packets

Figure 3.1: Generic decentralised distributed fountain coding scheme

are normalised such that ∀j ∈ Ns,
∑

i∈Nr
θji = 1. Note that also

∑
i∈Nr

πi = 1,∑
j∈Ns

γj = 1, by construction. Sets Ai, i ∈ Nr, and Bj, j ∈ Ns determine the divi-

son of the raw data packets and the encoded packets, respectively, into the classes:

subsequence x|Ai
is the i-th class of the raw data packets and subsequence y|Bj

is the

j-th class of the encoded packets, i.e., the class of the encoded packets formed at the

node j ∈ Ns. Each source node j ∈ Ns has direct access to a certain portion x|Cj
of

data sequence x, where

Cj = ∪θj
i 6=0Ai, (3.2)

and similarly, each class i ∈ Nr of the raw data packets is used in the generation

of a certain subsequence y|Si
of y, where

Si = ∪θj
i 6=0Bj. (3.3)

To summarise, graph G characterises: (i) availability of data at the source nodes:

node j has access to sequence x|Ai
if θji > 0; (ii) the rate of production of the encoded

packets at each of the source nodes: subsequence y|Bj
was produced at node j; and

(iii) bias introduced towards certain portions of data in the formation of the encoded

packets: during the generation of each encoded packet, packets from subsequence x|Ai

are used with probability θji at node j. We call graph G a DDLT graph. Generally, it

can be viewed as a higher-level view on the factor graph used for decoding. Each node

55

Ai represents an entire class of the variable nodes and each node Bj represents an

entire class of the factor nodes. Furthermore, the weights on the edges in G quantify

the amount of edges in the decoding graph connecting the corresponding classes.

Bias used in the LT encoding induces a certain probability distribution across

the raw data packets in di�erent classes once the encoded packet degree has been

selected according to the appropriate degree distribution. This may have an e�ect of

producing an unequal error protection (UEP) property across various classes of the

data packets. Namely, during the generation of an encoded packet ybj , bj ∈ Bj at

node j, j ∈ Ns each data packet in class Ai is selected with probability θj
i

πik
, i ∈ Nr.

The following two examples illustrate how the choice of weights Θ = (θji) induces

di�erent local code properties at a particular source node j ∈ Ns.

Example 20 (Uniform LT encoding). Source node j ∈ Ns chooses uniformly from

all the data packets available: values of θji are proportional to the sizes of Ai, i.e.,

θji = πi∑
l∈Cj

πl
. This means that the source node j is performing a standard LT

encoding over the available subsequence x|Cj
.

Example 21 (Non-uniform LT encoding). Let a source node j ∈ Ns have access to

exactly two equal-sized classes of the raw data packets: Ai1 and Ai2 , where πi1 = πi2 .

If we set θji1 = 3/4, and θji2 = 1/4, a data packet in class i1 will be three times more

likely to be used than a data packet in class i2 in the generation of each encoded

packet ybj , bj ∈ Bj.

With G and the sequence of the degree distributions (Ω1(x),Ω2(x), . . . ,Ωs(x)),

we have fully described an instance of the data collection with the decentralised

distributed LT encoders. The receiver sees this instance as a particular code ensemble,

which we denote by DDLT(G, {Ωj(x)}sj=1, k). We are interested in the decoding

performance associated to this ensemble as k →∞.

3.2 Generalised And-Or Lemma

Assume that each source node is producing the encoded packets as described in

the previous section, and that once a collector node successfully receives a su�cient

amount of the encoded packets, it attempts to recover the entire sequence x. We

56

can capture the asymptotic performance of the belief propagation decoder at the

collector node as a function of the code overhead ε by the generalisation of the

original And-Or tree analysis. As in the standard And-Or tree analysis and density

evolution arguments, we will reach the conclusions on the asymptotic performance of

the decoder by looking at the structure and, speci�cally, at the degree distributions of

the factor graph used in decoding. What distinguishes this generalised setting from

the standard LT decoder is that the nodes on the factor graph are divided into the

classes, each of the classes of nodes possibly having a di�erent degree distribution.

Classes are introduced naturally - class i of variable (input) nodes corresponds to the

raw data packets x|Ai
and class j of the factor (output) nodes corresponds to the

encoded packets y|Bj
.

Theorem 22 (Generalised And-Or analysis). For all i ∈ Nr, the packet error

rate within the subsequence x|Ai
of a belief propagation decoder for an ensemble

DDLT(G, {Ωj(x)}sj=1, k) at a collector node with no apriori knowledge of the raw

data, as k →∞, converges to yi,∞ = liml→∞ yi,l, where yi,l is given by:

yi,0 = 1,

yi,l+1 = exp
[
−(1 + ε)

s∑
j=1

θji
γj
πi

Ω′j(1−
r∑

m=1

θjmym,l)
]
. (3.4)

Proof. In the overall decoding factor graph F , let us restrict our attention to the

subgraph F (j) consisting of the output nodes in class j. The input nodes with non-

zero degrees in F (j) belong to the classes i ∈ Nr such that θji 6= 0. The average output

degree in F (j) is µj = Ω′j(1). We claim that in F (j), the degree of the input nodes in

each class i, follows a binomial distribution. Speci�cally, the probability Λj
i,d that an

input node in class i has a degree d is given by:

Λj
i,d =

(
µjγjk(1 + ε)

d

)
(
θji
πik

)d(1− θji
πik

)µjγjk(1+ε)−d. (3.5)

Indeed, the number of edges in F (j) is clearly µjγjk(1+ε), and each input node in

class i is incident to any edge with probability θj
i

πik
, by construction. As k →∞, the

input degree distribution of class i in F (j) converges pointwise to Poisson(θji
γj

πi
µj(1 +

ε)) distribution. We will therefore identify the asymptotic input degree distribution

57

of class i in F (j) with:

Λ
(j)
i (x) = exp[θji

γj
πi
µj(1 + ε)(x− 1)]. (3.6)

Now, pick a random input class i and an arbitrary node a within that class. At

the start of the decoding, as the collector node has no apriori knowledge of the raw

data, node a is erased with probability yi,0 = 1. At the (l + 1)-th iteration, a stays

erased if and only if it receives the erasure-message from each of its neighbours at the

previous iteration. For the moment, �x the degrees of node a within each subgraph

F (j) to some value dj. Note that dj = 0 whenever θji = 0. If we denote the probability

that a node in the output class j sends the erasure-message to an input node in class

i at the l-th iteration by pji,l, then:

P(a is erased at iteration l + | dj) =
s∏
j=1

(pji,l)
dj , (3.7)

and averaging over dj, j ∈ Ns gives

yi,l+1 =
s∏
j=1

Λj
i (p

j
i,l). (3.8)

Note that the Poisson distribution as a degree distribution has a property that the

node-perspective and the edge-perspective degree distributions are identical, which

means that the probability that an input node is erased at iteration l + 1 and the

probability that an input node sends the erasure-message to any of its neigbours at

iteration l + 1 are also equal as k → ∞. It is left to calculate pji,l. Let f be an

arbitrary neighbour within class j of an input node a within class i and �x its degree

to d. As output node sends an erasure whenever it receives the erasure-message from

any of its neighbours, and since each edge incident to f is connected to a class m

input node with probability θjm, we have that:

P(f sends erasure at iteration l| d) = 1− (1−
r∑

m=1

θjmym,l)
d−1. (3.9)

We have chosen f not as an arbitrary output node, but via an edge incident to

it. Thus, f has a degree d with probability ωj,d, where ωj(x) = Ω′j(x)/Ω′j(1) is the

58

edge-perspective degree distribution used at source node j, and thus:

pji,l = 1− ωj(1−
r∑

m=1

θjmym,l). (3.10)

Combining (3.6), (3.8) and (3.10) gives (3.4), q.e.d.

3.3 Informed collector nodes

In the previous section, we have characterised the asymptotic behavior of the BP

decoder executed at the collector node with no apriori side information on the data

sequence of interest, as a function of code overhead ε. In such a scenario, we wish

to make ε as small as possible in order to reach a desired packet error rate δi within

class i of the raw data packets. There is a trivial lower bound on ε, as the number

of the reconstructed data packets cannot be larger than the number of the received

data packets, and it is given by the following Proposition:

Proposition 23. If ensemble DDLT(G, {Ωj(x)}sj=1, k) reaches packet error rate δi

within class i of the raw data packets at the code overhead ε, then:

n/k = 1 + ε ≥
r∑
i=1

(1− δi)πi. (3.11)

The asymptotic code design problem can be viewed as �nding an appropriate

sequence of degree distributions (Ω1(x),Ω2(x), . . . ,Ωs(x)), which reaches the packet

error rate δi within class i of the raw data packets at the code overhead ε, which is

as close as possible to the lower bound in (3.11).

However, if a collector node happens to already have a direct access to a class of the

raw data packets, our problem becomes signi�cantly di�erent. We will refer to such

collector nodes as the informed collector nodes. Since source nodes are oblivious

of which data packets are known at the collector node, they cannot exclude those

data packets from the encoding operation and transmit only the useful information.

Instead, code design needs to adapt to this assumption that the collector node has

access to an apriori side information about the data, i.e., that the source nodes are

communicating supplementary data to the informed collector nodes. The �rst step

in the formal understanding of this code design problem is to write the appropriate

59

version of generalised And-Or analysis. This is a straightforward task and the proof

of the following Theorem is omitted.

Theorem 24 (Generalised And-Or analysis for side information scenario). For all

i ∈ Nr, the packet error rate within sequence x|Ai
of a belief propagation decoder

for an ensemble DDLT(G, {Ωj(x)}sj=1, k) at a collector node which has access to the

portion x|C of the data sequence, as k →∞, is yi,∞ = liml→∞ yi,l, where yi,l is given

by:

yi,l = 0, ∀l ≥ 0,

if Ai ⊂ C, and

yi,0 = 1,

yi,l+1 = exp
[
−(1 + ε)

s∑
j=1

θji
γj
πi

Ω′j(1−
r∑

m=1

θjmym,l)
]
, (3.12)

otherwise.

Intuitively, the decoder side information should imply the situation in which a

much lower number n of the encoded packets observed at the collector node su�ce

for the complete reconstruction of the data, and a trivial lower bound is given in the

following Proposition.

Proposition 25. If an ensemble DDLT(G, {Ωj(x)}sj=1, k) reaches packet error rate

δi within class i of the raw data packets at the code overhead ε at a collector node

which has access to the portion xC of the data sequence, then

n/k ≥
∑
Ai*C

(1− δi)πi. (3.13)

Now, let us consider a simple single source node scenario in the above setting,

illustrated in Figure 3.2. Let us assume that the data sequence x = (x1, x2, . . . , xk)

can be divided into two classes of the raw data packets: x|A1
and x|A2

of equal size k/2.

The source node has access to the entire data sequence, whereas the �rst collector

60

encoder

1
|Ax

2
|Ax

y

collector
node 1

collector
node 2

Figure 3.2: Fountain coding with informed collector nodes

node has apriori knowledge of the data packets in x|A1
and the second collector node

has apriori knowledge of the data packets in x|A2
. Ideally, each collector node would

require only slightly more than k/2 encoded packets to recover the unknown packets.

However, the source node does not know which data packets are available at which

collector node, and is required to (uniformly) encode over both the classes x|A1
and

x|A2
with LT code ensemble LT (k,Ω(x)) and broadcast the encoded packets. Can we

still provide the reliable recovery at the collector nodes with just over k/2 correctly

received encoded packets? That is, can we disseminate the independent messages,

x|A2
to the �rst collector node and x|A1

to the second collector node by the same

set of encoded packets? We will provide detailed study of and answers to these

questions in Chapter 5. We will see that the answer to both questions is, remarkably,

yes, and we will introduce and analyse coding schemes applicable to these problems.

At this stage, let us demonstrate why generalised And-Or lemma is important in

understanding the code design problem for the side information scenario. Namely,

we can express the asymptotic packet error rate within class x|A2
at the �rst collector

node versus the number of received packets (at that collector node) per blocklength

ρ = n/k as:

y2,0 = 1,

y2,l+1 = exp
[
−ρΩ′(1− y2,l

2
)
]
, (3.14)

where we assume that the source node uses the standard LT encoding with the

61

degree distribution Ω(x). We have seen in Section 2.4 how the standard asymptotic

fountain code design involves �nding such degree distribution Ω(x) which satisfy

(1 + ε)Ω′(1− z) > − log(z), z ∈ [δ, 1], (3.15)

for a desired packet error rate δ at the code overhead ε, and that the capac-

ity approaching ensembles converge pointwise to the limiting soliton distribution

Ψ∞(x) =
∑

i≥2
xi

i(i−1)
. Analogously, based on the characterisation of the asymptotic

error rate in (3.14), we can formulate the asymptotic fountain code design problem

with side information as �nding such limiting degree distribution Ω(x) which satisfy

ρΩ′(1− z

2
) > − log(z), z ∈ [δ, 1]. (3.16)

We can immediately conclude that the limiting soliton distribution is not an

asymptotically optimal solution to this problem, as it translates (3.16) to the condi-

tion:

(ρ− 1)| log(z)|+ log 2 > 0, z ∈ [δ, 1], (3.17)

whereupon ρ > 1− log 2
| log(δ)| . On the other hand, Proposition 25 gives a lower bound

of ρ > 1−δ
2
. As δ → 0, limiting soliton distribution requires ρ to be greater than 1,

and consequently n > k, i.e., each collector node has to receive at least k encoded

packets, as if it had not had any apriori knowledge of the data packets at all! In

contrast, an asymptotically optimal solution should not have ρ far away from a half.

Thus, we conclude that the side information problem requires a signi�cantly di�erent

choice of the degree distributions. The examples of these degree distributions will be

given in Section 5.4.

3.4 Decentralised Distributed Fountain Codes with Noise

We have seen in Section 2.5 how fountain codes are amenable to the soft decision

decoding when used for the transmission over binary input memoryless symmetric

(BIMS) channels. The density evolution analysis of the performance of fountain codes

with soft decision decoding can be extended in an analogous manner to the decen-

62

tralised setting. Let us �rst review our assumptions in this new noisy setting. Recall

that we make an important distinction regarding the nature of data units. Rather

than containing k data packets, typical for the erasure/noiseless transmission sce-

nario, data sequence x = (x1, x2, . . . , xk) contains k bits, i.e., xi ∈ F2, mapped to the

set {−1, 1}. We still assume that the encoded symbols observed at the collector node

are generated by the ensemble DDLT(G, {Ωj(x)}sj=1, k) as before. Nonetheless, each

observed symbol in the sequence y|Bj
, j ∈ Ns is now an output of a BIMS channel

Cj. Let us, for simplicity, assume that each channel Cj is a binary input additive

white Gaussian noise channel (BIAWGNC) with standard deviation σj. Then:

Theorem 26. Under the semi-Gaussian approximation and the all-zero codeword

assumption, for all i ∈ Nr, the mean of the the log-likelihood ratios within the subse-

quence x|Ai
in the BP decoder for the ensemble DDLT(G, {Ωj(x)}sj=1, k) executed at a

collector node with no apriori knowledge of the raw data and where transmission from

the j-th source node occurs over a BIAWGNC(σj), converges to νi,∞ = liml→∞ νi,l as

k →∞, where νi,l is given by:

νi,0 = 0,

νi,l+1 = 2
s∑
j=1

θji
γj
πi
µj(1 + ε) · (3.18)

·
dmax∑
d=1

ωj,dE

[
atanh

(
tanh

(Yj
2

) d−1∏
t=1

tanh
(Mj,l,t

2

))]
, (3.19)

where Yj ∼ N (2
σ2

j
, 4
σ2

j
) and Mj,l,t, t ∈ Nd−1, are i.i.d. Gaussian mixtures, Mj,l,t ∼∑r

m=1 θ
j
mN (νm,l, 2νm,l).

Proof. At the start of the decoding, the collector node has no apriori information

on the input symbols and the corresponding log-likelihood ratios are initialised to

zero. At the (l + 1)-th iteration, νi,l+1 is obtained as the sum of the means of the

incoming messages to the nodes in class i. In the subgraph F (j) consisting of the

output nodes in class j, the average input node degree in class i is θji
γj

πi
µj(1 + ε) (see

proof of Theorem 22). We have:

63

νi,l+1 =
s∑
j=1

θji
γj
πi
µj(1 + ε) · ηj,l, (3.20)

where ηj,l is the mean of the messages passed from the output nodes in class j at

the l-th iteration. This mean can be explicitly calculated as:

ηj,l = 2
dmax∑
d=1

ωj,dE

[
atanh

(
tanh

(Yj
2

) d−1∏
t=1

tanh
(Mj,l,t

2

))]
. (3.21)

The expectation in the sum is calculated for the output node of a �xed degree

d, which is then averaged over the edge-perspective degree distribution ωj(x). Fur-

thermore, Yj denotes the log-likelihood ratio of channel Cj, distributed as N (2
σ2

j
, 4
σ2

j
)

if Cj is BIAWGNC(σj), whereas Mj,l,t are i.i.d. random variables distributed as the

messages received at an output node in class j. As each edge incident to an output

node in class j is incident to a class m input node with probability θjm, Mj,l,t are

mixtures of consistent Gaussian variables N (νm,l, 2νm,l) which model the messages

passed from each class m of the input nodes.

The next step in our analysis is the case in which the collector node may contain

some apriori side information about the raw data. It is useful to think of this side

information as being the output of a virtual communication channel when the original

data is the input. For instance, denote by z|Ai
side information available about the

information subsequence x|Ai
. We can think of each symbol in z|Ai

as the output of

a virtual BIMS channel C̄i which models the correlation between the source and the

available side information. The amount of the information available about each class

is su�ciently described by the mean of the log-likelihood ratios within the sequence

z|Ai
. For simplicity, we again assume that each channel C̄i is BIAWGNC(σ̄i), and

we obtain another version of density evolution, a straightforward modi�cation of

Theorem 26.

Theorem 27. Under the semi-Gaussian approximation and the all-zero codeword

assumption, for all i ∈ Nr, the mean of the log-likelihood ratios within subsequence

x|Ai
in the BP decoder for the ensemble DDLT(G, {Ωj(x)}sj=1, k) executed at a col-

lector node with the uncoded side information z|Ai
modelled as the output of a virtual

BIAWGNC(σ̄i), converges to νi,∞ = liml→∞ νi,l as k →∞, where νi,l is given by:

64

νi,0 = 2/σ̄i,

νi,l+1 = 2/σ̄i + 2
s∑
j=1

θji
γj
πi
µj(1 + ε) · (3.22)

·
dmax∑
d=1

ωj,dE

[
atanh

(
tanh

(Yj
2

) d−1∏
t=1

tanh
(Mj,l,t

2

))]
,

where Yj ∼ N (2
σ2

j
, 4
σ2

j
) and Mj,l,t, t ∈ Nd−1, are i.i.d. Gaussian mixtures, Mj,l,t ∼∑r

m=1 θ
j
mN (νm,l, 2νm,l).

3.5 Concluding remarks

In this Chapter, we have derived several versions of the asymptotic analysis associ-

ated to the introduced generic distributed and decentralised fountain coding schemes.

We have shown that it is possible, by carefully studying the resulting structure of

the decoding graphs, to characterise the asymptotic performance of these generic

code ensembles. In some special cases, the derived asymptotic analysis allows us to

formulate a robust linear programming optimisation to calculate the asymptotically

optimal code parameters, i.e., the degree distributions which in some cases, perhaps

surprisingly, look very di�erent from soliton-like degree distributions used in the stan-

dard fountain codes. The forthcoming Chapters make use of the derived asymptotic

analysis to construct rateless coding schemes for di�erent coding problems arising in

communications.

65

Chapter 4

Fountain Codes for Unequal Error

Protection

4.1 Introduction

When studying the performance of an LT code ensemble or a Raptor code ensemble,

we assume implicitly that each input symbol has an equal probability of being recov-

ered at the receiver. This is a perfectly reasonable assumption. Indeed, during the

LT encoding procedure presented in section 2.2.1, after the output symbol degree has

been sampled, input symbols to be used in the formation of that particular encoded

symbol are drawn uniformly at random. Therefore, there is no sense of hierarchy

across the set of input symbols - each input symbol is treated in exactly the same

way. This is why we say that LT and Raptor codes are equal error protection codes.

In sparse graph codes, a typical measure of the amount of error protection associated

to a particular input symbol is the degree of that input symbol node in the decoding

graph. Whereas it is intuitively clear that in a particular instance of an LT code

ensemble LT (k,Ω(x)) some input symbol nodes will have higher degrees in the de-

coding graph and thus enjoy the higher error protection, this cannot be said for the

ensemble as a whole. In addition, we have seen that the input degrees in LT code

ensembles typically follow a binomial distribution and that the variations around the

mean become less pronounced as k →∞.

While equal error protection is a fundamental property of many error correcting

schemes and in many cases each input symbol is equally important to the receiver, e.g.,

66

the transmission of the executable �les, there is a range of communications scenarios

that di�er. Many types of messages in such scenarios convey a special structure such

that the information included in some parts of the message is more important to the

receiver than that in the other parts and, thus, a stronger error protection should

be applied to these more important parts. This phenomenon ranges from a trivial

scenario where an error in header information of a block of data being transmitted

may cause serious damage to the subsequent processing of the data to a more subtle

case of transmission of multimedia compressed by a scalable layered coder [106].

When a scalable layered video coder, such as H.264 SVC [107], is applied to a video

sequence, the resulting block of data is typically divided into several classes of input

symbols of di�erent importances, referred to as the base layer (BL) and a number

of enhancement layers (ELs). The main idea is that the base layer alone can be

used to decode the video sequence at the lower quality and can subsequently be used

in predicting the rest of the data. Thus, error in the decoding of BL may lead to

a catastrophic error propagation in the subsequent decoding processes, whereas the

errors in the ELs can be tolerated to a higher extent as their role is the gradual

improvement of the overall quality of video. This leads to a signi�cant interest in the

study of unequal error protection (UEP) coding schemes.

In this chapter, we will study di�erent methods of constructing fountain codes

which provide the UEP property. We will take special interest in the class of foun-

tain codes for UEP named Expanding Window Fountain (EWF) codes, which uses

the idea of �windowing� the set of input symbols. This class of codes operates on

a prede�ned sequence of strictly increasing subsets of the data set, named windows.

Each output symbol is assigned a particular window in a randomised fashion, with

respect to a certain probability distribution over a set of windows. Furthermore, very

much like in LT codes, in the formation of an output symbol, the input symbols from

the window assigned to that output symbol are drawn uniformly, which simpli�es the

implementation of the scheme. This results in an encoding scheme where the input

symbols in the smallest window will have the strongest error protection, since they

are contained in all the windows and will typically have the highest input degrees in

the decoding graph. We show using both the analytical techniques and the numer-

67

ical simulations, that the windowing approach introduces additional freedom in the

design of UEP rateless codes, thereby o�ering a broad �exibility of design and better

performance than the other fountain codes for UEP [108, 3] introduced in the litera-

ture. Unequal error protection schemes based on fountain codes have seen the advent

of research interest [109, 110, 111], especially in the context of video transmission

[112, 113, 6, 114, 7, 8, 115].

In what follows, we assume that the message block of interest x = (x1, x2, . . . , xk)

consists of k data packets xi ∈ Fb2, i ∈ Nk, and that it is divided into classes of

importance. Thus, we will interchangeably use the terms �symbols� and �packets�.

We will maintain the notation of the previous Chapter and describe this division

by a disjoint partition of Nk, given by the set A = {A1, A2, . . . Ar}, r ≤ k, such

that ∀i ∈ Nr, |Ai| = πik, for some πi ∈ [0, 1]. The actual length of each of the

subsequences x|Ai
, i ∈ Nr, will be denoted as si = πik. We assume that the encoder

knows the structure of the message block which induces the division into the classes

of importance, i.e., the encoder is aware of the partition A = {A1, A2, . . . Ar}. Hence,

the actual ordering of input symbols is irrelevant from the point of view of the code

designer, and we will often assume that the �rst s1 data packets in the message

sequence form the �rst class of importance, i.e., A1 = {1, 2, . . . , s1}, the next s2 data

packets form the second class, i.e., A2 = {s1 +1, s1 +2, . . . , s1 +s2}, etc. Furthermore,

the importance of classes decreases with the class index, i.e., the i-th class is more

important than the j-th class i� i < j. In the asymptotic analysis of performance of

fountain coding schemes for UEP, i.e., analysis of performance as the block length k

tends to in�nity, it is su�cient to specify the sizes of the importance classes relative

to k, i.e., the values πi, i ∈ Nr. As these values form a probability mass function

on the set Nr, we will often denote them in the generating polynomial notation as

π(x) =
∑r

i=1 πix
i and refer to them as the importance pro�le of the message block.

4.2 Weighted LT codes

Rahnavard et al [108, 3] studied a simple class of fountain codes for unequal error

protection. The UEP property is achieved by assigning di�erent probabilities of

being drawn in the generation of an output symbol to the input symbols in di�erent

68

importance classes. This produces a bias towards certain classes of symbols and

induces a di�erent behaviour of input degrees across the set of importance classes.

The assignment of the probabilities is done in such a fashion that the input symbols

from the more important classes are more likely to be drawn in formation of the

output symbols. Therefore, this approach is a generalisation of LT codes in which

the neighbours of an output symbol are selected non-uniformly at random. We refer

to these codes as Weighted LT (WLT) codes.

It is immediately clear that DDLT code ensembles introduced in Chapter 3 con-

tain WLT code ensembles as a special case with a single source node and a single

class of output symbols, and this representation of WLT codes as an instance of the

decentralised distributed fountain coding framework is illustrated by a DDLT graph

in Figure 4.1. The non-uniform probability distribution on the set of input packets is

fully determined by the parameters θi, i ∈ Nr. Namely, each data packet in class Ai

is selected with probability θi

πik
in formation of the each output packet. Stronger error

protection in the more important classes is achieved by selecting such θi, i ∈ Nr to

provide θ1
π1
> θ2

π2
> · · · > θr

πr
, i.e., an input symbol from class Ai is more likely to be

drawn in formation of the output symbols than an input symbol in class Aj, whenever

i < j. The parameters θi, i ∈ Nr form a probability mass function on the set Nr and

we will denote them in the generating polynomial notation as θ(x) =
∑r

i=1 θix
i and

refer to them as the class selection pro�le of the encoding scheme. WLT code ensem-

ble is thus fully described by the blocklength k, the degree distribution Ω(x) and two

probability mass functions on Nr, namely, the importance pro�le π(x) and the class

selection pro�le θ(x). We denote this ensemble by WLT (k, π(x), θ(x),Ω(x)).

4.2.1 Asymptotic analysis of WLT codes

The following result is a special case of the generalised And-Or analysis for DDLT

codes in Lemma 22, as applied to WLT codes. The characterisation of the asymptotic

packet error rates in Lemma 28 is consistent with the derivations in [3], although the

authors of [3] use a slightly di�erent notation. Instead of quantifying the bias towards

more important symbols by the probability θi that a randomly selected output node

in the decoding graph is connected to the i-th importance class, parametrisation is

69

k1π
1A

k2π
2A

kr 1−π
1−rA

krπ
rA

1θ 2θ 1−rθ rθ

n

1B

…

Figure 4.1: Weighted LT codes are DDLT codes with a single class of output nodes

performed in terms of the nonnegative constants ki, i ∈ Nr such that pi = ki

k
is the

probability that a randomly selected output node in the decoding graph is connected

to a speci�c node in the i-the importance class. Obviously, ki = θi

πi
in our setting.

Lemma 28. The packet error rate of a WLT code ensembleWLT (k, π(x), θ(x),Ω(x))

within the i-th class of importance, as k →∞, converges to yi,∞ = liml→∞ yi,l, where

yi,l, i ∈ Nr, ∀l ∈ N0, is given by:

yi,0 = 1,

yi,l+1 = exp
[
−(1 + ε)

θi
πi

Ω′(1−
r∑

m=1

θmym,l)
]
.

From the following Lemma, we can reach an important conclusion regarding the

asymptotic performance of WLT codes, building on the original work on WLT codes

in [3]. Let us introduce the following di�erence equation:

z0 = 1,

zl+1 = exp
[
−(1 + ε)Ω′(1−

r∑
m=1

θmz
θm/πm

l)
]
. (4.1)

The following corollary gives an important relation between the asymptotic packet

error rates in di�erent importance classes.

Corollary 29. yi,l = z
θi/πi

l , ∀i ∈ Nr, ∀l ∈ N0, and in particular yi,∞ = z
θi/πi
∞ .

Proof. For l = 0, the equalities are trivial ∀i ∈ Nr. Assume that the equalites hold

70

for some l ∈ N0, ∀i ∈ Nr. Then,

yi,l+1 = exp
[
−(1 + ε)

θi
πi

Ω′(1−
r∑

m=1

θmym,l)
]

= exp
[
−(1 + ε)

θi
πi

Ω′(1−
r∑

m=1

θmz
θm/πm

l)
]

=

(
exp
[
−(1 + ε)Ω′(1−

r∑
m=1

θmz
θm/πm

l)
])θi/πi

= z
θi/πi

l+1 ,

and the proof follows by induction.

This result tells us that the asymptotic packet error rates in di�erent importance

classes of code ensemble WLT (k, π(x), θ(x),Ω(x)) can be characterised by a single

parameter z∞. In particular, the change of the importance pro�le π(x) and the class

selection pro�le θ(x) which decreases the packet error rates in more important classes

results in an increase of the packet error rates in less important classes. Furthermore,

if the decoder exhibits the decoding avalanche behaviour within some importance

class, i.e., the overwhelming majority of packets in that importance class which can

be reconstructed are reconstructed at a particular value of the code overhead ε, it

exhibits the same behaviour within all the importance classes and, more importantly,

at exactly the same value of code overhead ε.

4.2.2 WLT codes with two classes of importance

WLT code ensembles with two classes of importance are studied in some detail in [3].

To maintain the consistency with the notation in [3, 4], we will refer to the �rst class of

importance as MIB (More Important Bits) class and to the second class of importance

as LIB (Less Important Bits) class. For given values of π1, π2, θ1, θ2, the asymptotic

code design problem can be formulated as �nding such a degree distribution Ω(x)

which reaches the desired value of z∞ = liml→∞ zl, where zl is given by (4.1), at the

minimum code overhead ε. The asymptotic packet error rates within the MIB class

and the LIB class are then equal to zθ1/π1
∞ and zθ2/π2

∞ respectively. In Figure 4.2, it is

illustrated how asymptotic packet error rates yMIB,∞ and yLIB,∞ change as a function

71

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

θ
1

as
ym

pt
ot

ic
 p

ac
ke

t e
rr

or
 r

at
es

z∞=0.01

y
MIB,∞

y∞

y
LIB,∞

Figure 4.2: MIB and LIB packet error rates as a function of θ1, assuming z∞ = 0.01

of parameter θ1, where π(x) = 0.1x+ 0.9x2, assuming that Ω(x) and ε are such that

z∞ = 0.01. The overall asymptotic packet error rate y∞ = π1yMIB,∞ + π2yLIB,∞ is

also plotted. This sort of analysis allows us to select an appropriate value of θ1 for

a given importance pro�le π(x), such that the asymptotic packet error rates within

the MIB and the LIB classes reach the desired values.

With appropriate transformations, we can optimise the degree distribution for

WLT codes with two importance classes using the following generic linear program:

LPWLT : min
dmax∑
d=1

ωd
d

(4.2)

ω(1− θ1z
θ1/π1

i − θ2z
θ2/π2

i) ≥ − ln(zi), i ∈ Nm,

ωd ≥ 0, d ∈ Ndmax .

where 1 = z1 > z2 > · · · > zm = δ are m equidistant points on [δ, 1]. The solution

of this linear program is an edge perspective degree distribution with maximum degree

dmax which reaches the MIB packet error rate of δθ1/π1 and the LIB packet error rate

of δθ2/π2 at the minimum overhead. A result of this optimisation for dmax = 100,

δ = 0.0075 in the weighted LT instance with θ1 = 0.184, π1 = 0.1, is the degree

distribution Ω∗(x) = 0.0080x1+0.4226x2+0.2769x3+0.1515x6+0.0214x7+0.0524x13+

0.0123x14 + 0.0338x27 + 0.0212x74. In Figure 4.3, we compare the asymptotic and

large blocklength (k = 105) packet error rate of this degree distribution with that of

72

−0.05 0 0.05 0.1 0.15 0.2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

y
1
, (k=∞, Ω*)

y
2
, (k=∞, Ω*)

y
1
, (k=105, Ω*)

y
2
, (k=105, Ω*)

y
1
, (k=∞, Ω

raptor
)

y
2
, (k=∞, Ω

raptor
)

Figure 4.3: Asymptotic and simulated packet error rates of WLT codes with an optimised degree distri-
bution as functions of reception overhead ε.

Ωraptor(x), which was used in [3] with the same parameter θ1 = 0.184. Note that, as

discussed in subsection 2.4.2, decoding avalanche can occur at the negative overhead

values, since full reconstruction of the message is not required (certain packet error

rate dependant on δ is tolerated within each of the classes). The results clearly

indicate how a designed degree distribution outperforms a standard fountain degree

distribution in this setting. Nonetheless, we have noted a fragile behaviour of the

designed degree distributions at the smaller blocklengths and the robust �nite length

design remains a problem for further investigations.

Alternatively to the presented code design, we can seek to obtain an optimal value

of θ1 in order to reach a minimum value of z∞ at the �xed code overhead ε to some

predetermined degree distribution Ω(x). This is the approach pursued in [3]. For

example, in the case when Ω(x) = Ωraptor(x), z∞, yMIB,∞ and yLIB,∞ are plotted in

Figure 4.4 as functions of θ1 when the reception overhead is �xed at ε = 0.03 (full

lines) or ε = 0.05 (dashed lines). There is a phase transition occuring at the value

θ1 = 0.184 when ε = 0.03 and at the value θ1 = 0.210 when ε = 0.05. This phase

transition occurs at the exact value at which the decoding avalanche, i.e., the strong

drop in values of z∞ characteristic of the BP decoder, crosses the targeted reception

overhead. Therefore, such choice of parameter θ1 is the optimal choice for a given

importance pro�le π(x), the degree distribution Ω(x) and for the �xed overhead ε as

73

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

θ
1

as
ym

pt
ot

ic
 p

ac
ke

t e
rr

or
 r

at
es

y
MIB,∞

y
LIB,∞

phase transition at
θ

1
=0.184

phase transition at
θ

1
=0.210

z∞

Figure 4.4: Asymptotic packet error rates at the �xed overhead ε = 0.03 as functions of θ1 exhibit a phase
transition.

it reaches a minimum value of yMIB,∞ prior to the degradation in both yMIB,∞ and

yLIB,∞ at that particular overhead. In the example of Figure 4.4, yMIB,∞ = 1.24·10−4

and yLIB,∞ = 1.19 ·10−2 for θ1 = 0.184 in the case ε = 0.03, and yMIB,∞ = 3.75 ·10−5

and yLIB,∞ = 1.41 · 10−2 for θ1 = 0.210 in the case ε = 0.05.

4.2.3 Probability Distribution on Fk2 induced by a WLT ensemble

The design parameters of a WLT ensemble induce a probability distribution on Fk2

which determines the sequence of functions {mj(x)}j∈N in general fountain code en-

semble (cf. Section 2.1).

Proposition 30. The probability distribution on Fk2 induced by a WLT ensemble

WLT (k, π(x), θ(x),Ω(x)) is given by:

PV(v) =
∑

d1 + . . .+ dr = w(v),

di ≤ πik, ∀i ∈ Nr

Ωw(v)

(
w(v)

d1,d2,...,dr

)∏r
i=1 θ

di
i∏r

i=1

(
πik
di

) , ∀v ∈ Fk2. (4.3)

Proof. Let us assume that w(v) = d. This happens with probability Ωd. Denote the

Hamming weight of v|Aj
by dj, i.e., among the �rst π1k coordinates v has d1 non-zero

entries, among the next π2k coordinates it has d2 non-zero entries etc. Then, v is

74

. . .

. . .

… … … …

. . .

. . .

1 2 k1 k2 ki k = kr
+ + + + + + + + + + + + + + + +

{
{

i-th window of
input symbols

i-th class of
output symbols

Figure 4.5: Expanding Window Fountain Codes

equally likely as any vector with the same values of d1, d2, . . . , dr, and there is, in

total,
∏r

i=1

(
πik
di

)
such vectors. The probability of a particular sequence d1, d2, . . . , dr

is
(

w(v)
d1,d2,...,dr

)∏r
i=1 θ

di
i as each non-zero entry lies in the class Ai with probability θi.

Averaging over all such admissible sequences, i.e., those where di ≤ πik, ∀i ∈ Nr,

gives (4.3).

4.3 Expanding Window Fountain codes

The weighted LT codes are a generalisation of LT codes with the multiple classes of

the input symbols and a single class of the output symbols. Intuitively, it is clear

that introducing additional classes of the output symbols could further increase the

�exibility of the design and potentially improve the performance of a UEP fountain

coding scheme. A simple such strategy is a technique called Expanding Window

Fountain (EWF) codes, which we analyse in detail in this section.

EWF codes are a yet another generalisation of LT codes. However, their UEP

property arises as a consequence of windowing of the data set instead of imposing

a non-uniform probability distribution on the input packets during the generation

of each encoded packet. We de�ne the i-th window in the message sequence x =

(x1, x2, . . . , xk) as the subsequence x|Wi
, where Wi is the union of the sets Al, l ∈ Ni

determining the �rst i importance classes:

Wi =
i⋃
l=1

Al. (4.4)

75

Algorithm 4.1 EWF encoding algorithm
Input: message x = (x1, x2, . . . , xk); set of expanding windows W1 ⊂W2 ⊂ . . . ⊂Wr = Nk, where

|Wi| = ki, i ∈ Nr; probability distributions Ω1(x),Ω2(x), . . . ,Ωr(x) on Nk1 , Nk2 , . . . , Nkr
,

respectively; probability distribution γ on Nr.

Output: an encoded symbol y

1. Sample a window degree i with probability γi,

2. Sample an output degree d with probability Ωi,d,

3. Sample d distinct message symbols xj1 , xj2 , . . . , xjd uniformly at random from the message
subblock x|Wi

and XOR them, y =
⊕d

l=1 xjl .

If we assume that the �rst s1 packets in x form the �rst class of importance and

are followed by the second class packets etc., (4.4) simpli�es to Wi = Nki
, where

ki =
∑i

l=1 πlk. In particular, the most important packets form the �rst window,

whereas the entire sequence is the �nal r-th window. Note that the input packets

from the i-th class of importance belong to the i-th and all the subsequent windows,

as illustrated in Figure 4.5 . Again, in the asymptotic analysis of EWF codes, we

compactly describe the division into the importance classes using the importance

pro�le π(x) =
∑r

i=1 πix
i in the generating polynomial notation.

In contrast to the standard LT codes, we propose a scheme that assigns to each

output symbol a randomly chosen window with respect to a certain probability distri-

bution on Nr, named the window selection pro�le γ(x) =
∑r

i=1 γix
i, where γi is the

probability that the i-th window is chosen. Then, the output symbol is determined as

if the encoding is performed only on the selected window with an LT code of a suitably

chosen degree distribution, i.e., an LT (ki,Ωi(x)) ensemble is used when the i-th win-

dow is chosen. To summarise, an EWF code ensemble EWF(k, π(x), γ(x), {Ωi(x)}ri=1)

is a fountain code ensemble which assigns each output symbol to the i-th window with

probability γi, i ∈ Nr, and encodes the chosen window using the LT code ensemble

with the distribution Ωi(x) =
∑ki

d=1 Ωi,dx
d. This is a generalisation of LT codes, as in

the case when r = 1, we obtain a standard LT code for equal error protection. The

encoding of EWF codes is presented in Algorithm 4.1.

4.3.1 Asymptotic Analysis of EWF codes

In [4, 5], a rigorous asymptotic analysis of the performance of EWF codes as the

blocklength k →∞ was derived from the �rst principles, i.e., as the generalisation of

76

k1π
1A

k2π
2A

krπ
rA

n1γ
1B

…

n2γ
2B

nrγ
rB

…

1

21

1

ππ
π
+ 21

2

ππ
π
+

1π
2π

rπ

Figure 4.6: EWF codes as DDLT codes

a standard And-Or tree evaluation argument [65]. However, this asymptotic analysis

can be viewed in the light of the general asymptotic analysis for DDLT codes derived

in the previous chapter. Namely, EWF codes are simply another instance of the

DDLT framework, and this fact is illustrated in Figure 4.6. Importance pro�le π(x)

and the window selection pro�le γ(x) describe the division of the raw data packets

and the encoded packets, respectively, into r classes (note that r = s) in a natural

way. In addition, LT encoding in each of the output classes is a standard (uniform)

LT encoding by EWF code construction. This means that the weights θji of the edges

on the DDLT graph of EWF codes are given by:

θji =

{
0, i > j

πi∑i
m=1 πm

, otherwise.
(4.5)

Now, we give a DDLT And-Or analysis applied to EWF codes.

Lemma 31. The packet error rate of an EWF code ensemble EWF(k, π(x), γ(x), {Ωi(x)}ri=1)

within the i-th class of importance, as k →∞, converges to yi,∞ = liml→∞ yi,l, where

yi,l, i ∈ Nr, l ≥ 0, is given by:

yi,0 = 1,

yi,l+1 = exp
[
−(1 + ε)

r∑
j=i

γj∑i
t=1 πt

Ω′j(1−
j∑

m=1

πm∑i
t=1 πt

ym,l)
]
.

The results of Lemma 31 are consistent with the analysis presented in [4, 5]. In

77

the rest of this section, we will study a particularly simple and important scenario,

where the set of input symbols is divided in two importance classes, i.e., r = 2. As

before, the �rst class of importance will be referred to as the class of more important

bits (MIB) and the second class will be referred to as the class of less important bits

(LIB).

4.3.2 EWF codes with two importance classes

In the following, we provide a special case of Lemma 31 for EWF codes with two

importance classes and compare the obtained results with the WLT codes in order

to highlight the bene�ts of the windowing approach.

Corollary 32. The packet error rate of an EWF code ensemble EWF (k, π1x +

π2x
2, γ1x + γ2x

2,Ω1(x),Ω2(x)) within classes MIB and LIB, as k → ∞, converges

to yMIB,∞ = liml→∞ yMIB,l and yLIB,∞ = liml→∞ yLIB,l respectively, where yMIB,l

and yLIB,l are given by yMIB,0 = 1, yLIB,0 = 1 , and ∀l ≥ 0 by:

yMIB,l+1 = exp
[
−(1 + ε)

(γ1

π1

Ω′1(1− yMIB,l) + (4.6)

+ γ2Ω′2(1− π1yMIB,l − π2yLIB,l

)]
, (4.7)

yLIB,l+1 = exp
[
−(1 + ε)

(
γ2Ω′2(1− π1yMIB,l − π2yLIB,l

)]
. (4.8)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

γ
1

pa
ck

et
 e

rr
or

 r
at

e
at

 o
ve

rh
ea

d
ε=

0.
05

y
MIB,∞, Ω

1
=Ω

raptor

y
MIB,∞, Ω

1
=Ψ(100,0.03,0.5)

y
MIB,∞, Ω

1
=Ψ(500,0.03,0.5)

y
LIB,∞

phase transition at
γ
1
=0.084

Figure 4.7: Asymptotic analysis of packet error rates versus γ1 for EWF codes with di�erent choice of
degree distribution Ω1(x) at code overhead ε = 0.05.

78

0 0.05 0.1 0.15 0.2 0.25 0.3
10-12

10-10

10-8

10-6

10-4

10-2

100

γ
1

pa
ck

et
 e

rr
or

 r
at

es
 a

t v
ar

io
us

 o
ve

rh
ea

ds

γ
1
 =0.0377

γ
1
 =0.084

γ
1
 =0.125

γ
1
 =0.1985

ε =0 ε =0.1 ε =0.2ε =0.05

Figure 4.8: Optimisation of γ1 parameter for various overheads.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

overhead ε

A
sy

m
pt

ot
ic

 p
ac

ke
t e

rr
or

 r
at

es

WLT MIB: θ
1
=0.210

WLT LIB: θ
1
=0.210

EWF MIB: γ
1
=0.084

EWF LIB: γ
1
=0.084

EWF MIB: γ
1
=0.110

EWF LIB: γ
1
=0.110

LT (EEP), Ω
raptor

Figure 4.9: Asymptotic analysis of packet error rates for WLT and EWF rateless UEP codes versus the
code overhead ε.

For the sake of simplicity, let us focus on the case where π(x) = 0.1x + 0.9x2,

i.e., when 10% of the data sequence forms the MIB class. This allows us to compare

our results with the results obtained in [3]. In other words, we are interested in

the asymptotic performance of the EWF code ensemble EWF (0.1x + 0.9x2, γ1x +

γ2x
2,Ω1(x),Ω2(x)) with some �xed reception overhead ε. For start, let us assume

that the same degree distribution Ωraptor(x) (this distribution is explicitly given in

(2.13)) is applied on both windows and calculate the asymptotic packet error rates

at the overhead ε = 0.05.

Figure 4.7 shows the dependence of the asymptotic packet error rates, yMIB,∞

79

and yLIB,∞, on the �rst window selection probability γ1. Note that by increasing

γ1, we increase the bias to the selection of the input symbols from the �rst window

(MIB class), and thus we progressively add protection to the MIB class. Note that

for γ1 = 0, we have classical LT codes for equal error protection over an entire data

sequence (the second window), whereas for γ1 = 1, we have classical LT codes over

MIB class only (the �rst window). The parameter γ1 plays a similar role as the

parameter θ1 in WLT codes, and phase transitions occur in the curves yMIB,∞ and

yLIB,∞ at the particular values of γ1 similarly to those presented in Figure 4.4.

For this particular choice of the code parameters, we can �nd a local minimum of

yMIB,∞ as a function of γ1 in the range where yLIB,∞ is still not signi�cantly deteri-

orated (in Figure 4.7), i.e., before the phase transition1. The desired local minimum

occurs at γ1 = 0.084, and is equal to y(min)
MIB,∞ = 4.6 · 10−5. The equivalent point in

WLT codes occurs at θ1 = 0.210 and is equal to y(min)
MIB,∞ = 3.75 · 10−5, which is a

slightly better MIB performance than in the EWF case. This degradation for these

code parameters at �rst suggests the negative e�ect of the windowing approach, due

to the fact that the output packets constrained to the �rst window do not contain

any information about the LIB class. However, in this example we did not exploit

the positive side of the EWF codes, namely, the freedom to use di�erent degree dis-

tribution over the two windows of data. These distributions can very well be the

subject of further optimisation. However, for the illustration of the bene�ts of EWF

codes, it su�ces to use a simple heuristic of �enhancing� the degree distribution on

the �rst window, by applying a �truncated� robust soliton distribution, i.e., a robust

soliton distribution capped at a certain maximum degree kRSD which is generally

much smaller than the length of the message, kRSD � k. Thus, we use the robust

soliton distribution ΨkRSD,δ,c(x) [51] with a constant value of kRSD (note that the size

of the �rst window π1k asymptotically tends to in�nity and thus the computational

complexity of encoding/decoding remains linear in k). The results for kRSD = 100

and kRSD = 500 are presented in Figure 4.7. Here, the performance improvement

of EWF codes, compared to WLT codes becomes apparent, reaching an order of

magnitude lower local minimum of y(min)
MIB,∞ = 2.2 · 10−6 for kRSD = 500. Even such

1Phase transition occurs when the decoding avalanche in LIB class occurs at the reception overhead higher than

ε = 0.05

80

simple heuristic in the choice of degree distributions leads us to the conclusion that

an important advantage of the EWF codes in contrast to WLT codes lies in its possi-

bility to employ di�erent degree distributions in di�erent windows and thus produce

performance improvements for a MIB class of data without sacri�cing performance

for LIB class of data. We have seen from the Corollary 29 that this is not the case in

WLT codes, as it is impossible to decrease the MIB class packet error rate without

increasing the LIB class packet error rate.

The similar behaviour of yMIB,∞ and yLIB,∞ when robust soliton distribution

ΨkRSD,δ,c(x) with kRSD = 500, δ = 0.5, c = 0.03 distribution is applied on the MIB

window, for the various values of the reception overhead equal to ε = 0, 0.05, 0.1,

and 0.2 is illustrated in Figure 4.8. The selection probability of the MIB window,

γ1, that corresponds to the points of local minima of yMIB,∞, is presented for each

of these values of ε. As the reception overhead ε grows, signi�cant improvement of

yMIB,∞ is possible by the increase of the �rst window selection probability γ1, without

notable degradation of performance on yLIB,∞ when compared to the performance of

LT codes.

Figure 4.9 illustrates the asymptotic erasure probability curves of MIB and LIB

classes as a function of the reception overhead ε. We compare the EWF code with

ΨkRSD,δ,c(x), kRSD = 500, ,δ = 0.5, c = 0.03, applied to the �rst window and Ωraptor(x)

applied to the second window, with WLT codes with Ωraptor(x). We set γ1 = 0.084

which is an optimal choice for the reception overhead ε = 0.05 (Figure 4.8), whereas

for the weighted UEP fountain codes we use parameter value θ1 = 0.210 optimised for

the same reception overhead. Figure 4.9 clearly shows that the EWF codes exhibit

a stronger UEP properties than the corresponding WLT codes. The key advantage

of EWF codes is the �rst window of data can typically be decoded well before the

reception of k output symbols, due to the fact that the decoder makes use of the

packets which contain information restricted to the MIB class. This manifests in two

�decoding avalanches� in the packet error rate curves of the EWF codes. This unequal

recovery time (URT) property become more notable as we increase γ1 with a small

loss in LIB performance. This is illustrated in Figure 4.9 with the example of the

EWF code with the same design parameters, except that we set γ1 = 0.110. Again,

81

this is not the case in WLT codes, where all decoding avalanches occur simultaneously,

as a consequence of Corrolary 29.

4.3.3 Probability Distribution on Fk2 induced by an EWF ensemble

Although the EWF codes utilise a slightly more complicated design with a number

of additional parameters compared to LT codes, they belong to the class of binary

linear fountain codes described by (2.2)-(2.4), as the design parameters of an EWF

ensemble induce a probability distribution on Fk2 which determines the sequence of

functions {mj}j∈N of a fountain code ensemble. The probability distribution induced

by a fountain code ensemble EWF(k, π(x), γ(x), {Ωi(x)}ri=1) is given by:

PV(v) =
r∑

l=c(v)

γl
Ωl,w(v)(∑l

i=1 πlk
w(v)

) , ∀v ∈ Fk2, (4.9)

where c(v) = min{j ∈ Nr : vi = 0, ∀i >
∑j

i=1 πik} determines the smallest

window which contains all non-zero entries in v, and w(v) is the Hamming weight of

vector v.

4.3.4 Lower and upper bounds on the ML decoding of EWF codes

In this section, we will bound the performance of EWF codes under maximum like-

lihood (ML) decoding. The packet error rate in the i-th importance class of EWF

codes under the ML decoding can be lower bounded by a probability that an input

node belonging to that class has degree zero in the decoding graph. Recall that the

number of packets in the j-th window is denoted by kj =
∑j

i=1 πik. The probability

that the input node in the i-th class is not adjacent to some output node in the j-th

class is 1− µj

kj
, where µj is the average degree of the distribution Ωj(x), provided that

j ≥ i, and 1 otherwise. After averaging over the window selection distribution γ(x),

we obtain the lower bound on the probability pML
i (ε) of the failure of ML decoding

of the input symbols in the i-th importance class of EWF(k, π(x), γ(x), {Ωi(x)}ri=1)

at code overhead ε as:

pML
i (ε) ≥ (1−

r∑
j=i

γjµj
kj

)k(1+ε) (4.10)

82

The upper bound on pML
i (ε) can be derived as the sum of probabilities that an

arbitrary vector in Fk2, with a non-zero element corresponding to the input symbol

node in the i-th class, belongs to the dual space of the observed generator matrix

GEWF of the EWF code. This upper bound is provided in the following lemma:

Lemma 33. Under the ML decoding, the packet error rate of the input symbols in

the i-th importance class of an EWF code EWF(k, π(x), γ(x), {Ωi(x)}ri=1), for the

reception overhead ε, is upper bounded by

pML
i (ε) ≤ min

{
1, (4.11)

k∑
tr=1

· · ·
ti+1∑
ti=1

ti−1∑
ti−1=0

· · ·
t2∑
t1=0

r∏
p=1

(
kp − kp−1 − χ{p = i}
tp − tp−1 − χ{p = i}

)
(

r∑
j=1

γj

kj∑
d=1

Ωj,d ·
∑bd/2c

s=0

(
tj
2s

)(
kj−tj
d−2s

)(
kj

d

))(1+ε)k}

Proof. Let us �x the vector x ∈ Fk2 such that xl = 1, where index l corresponds to

the input symbol node in the i-th class of importance. The weight t = w(x) can be

freely distributed across the importance classes, provided that xl = 1, and hence we

can �x the sequence of weights of x in each window as t1 < t2 < · · · < tr = t. Once

the window j is assigned to a row g in GEWF , its weight d is determined by sampling

Ωj(x). Now,

g·x = 0 ⇔ g|{1,...,kj} · x|{1,...,kj} = 0

⇔ w(g|Ij) = 0 mod 2,

where Ij = supp(x|{1,...,kj}) is the support of the j-th window within the vector x.

Since Ij consists of exactly tj indices, the probability that w(g|Ij) is even becomes

∑bd/2c
s=0

(
tj
2s

)(
kj−tj
d−2s

)(
kj

d

) . (4.12)

To obtain the probability that g · x = 0 for a �xed x across all windows and output

degrees, we now take into account that w(g) = d with probability Ωj,d, when g is

83

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

overhead ε

p 1,
2

M
L (ε

)

LIB UB
LIB LB
MIB UB, δ=0.5
MIB LB, δ=0.5
MIB UB, δ=0.2
MIB LB, δ=0.2
EEP UB
EEP LB

Figure 4.10: Upper and lower bounds for the ML decoding of EWF codes.

assigned the window j, and that assignment of window j occurrs with probability γj.

The next step in the deriving of the upper bound (4.11) is to calculate how many

vectors x ∈ Fk2 exist with these �window-weights� t1, . . . , tr, such that xl = 1 for some

�xed index l from the i-th class of importance. This number is given by:

r∏
s=1

(
ks − ks−1 − χ{s = i}
ts − ts−1 − χ{s = i}

)
(4.13)

since in each successive importance class s one can freely distribute ts − ts−1 non-

zero elements, except when s = i. Note that we assumed conventions k0 = t0 = 0 to

simplify notation, and that χ is the indicator function. It is left to sum over all the

possible choices for the values of t1, . . . , tr. The only constraint on the choice of these

�window-weights� is that ti (and hence every weight of the larger windows) must be

greater than 1, since at least index l within the i-th importance is in the support of

vector x. For the same reason, ti−1 ≤ ti − 1. This way, we have derived the upper

bound (4.11).

Figure 4.10 represents the bounds on the ML decoding for r = 2, k = 500, k1 = 50,

γ1 = 0.11, and Ω2(x) = Ωraptor(x) . The lower and the upper bound become tight as

the reception overhead increases. We set Ω1(x) to the RSD Ψ(kRSD=50,δ=0.5,c=0.03)(x).

To illustrate how the UEP property of EWF codes may be improved by adapting

distribution Ω1(x), the ML bounds are also presented when Ω1(x) is set to an RSD

with smaller δ, Ψ(kRSD=50,δ=0.2,c=0.03)(x). In that case, the bounds on the ML decoding

84

decrease as shown in Figure 4.10. This simple example con�rms that the appropriate

choice of the degree distribution on the �rst window can strengthen the protection

within MIB class, while the protection of LIB class remains virtually unchanged.

4.3.5 Simulation results

In order to verify the results of the asymptotic analysis of the packet error rates of

EWF codes with two importance classes, we performed numerical simulations. We

simulated the case with k = 5000 input packets, and π(x) = 0.1x+0.9x2, i.e., s1 = 500

input packets are considered more important. The simulations are performed for the

same codes for which the asymptotic results on the packet error rate performances

are analysed and presented in Figure 4.9, namely, the WLT codes with parameter

θ1 = 0.210 and EWF codes with parameter γ1 = 0.084 and γ1 = 0.110. At the

receiver side, standard BP decoding is performed. Figure 4.11 demonstrates that

the simulated packet error rate performance matches the results predicted by the

asymptotic analysis, and that EWF codes with the parameter γ1 = 0.084 outperform

the weighted codes with parameter θ1 = 0.210 utilised in [3]. In addition, the increase

in γ1, i.e., a more frequent selection of the MIB window, further decreases MIB packet

error rate but introduces slight deterioration in the LIB packet error rates.

Simulated packet error rates for EWF codes at a larger blocklength, k = 2 · 104,

with the same code parameters are compared in Figure 4.12 with the asymptotic

packet error rates. These results clearly show that the packet error rates at large

blocklengths closely follow the results predicted by the asymptotic analysis. Also, at

the larger blocklengths, the signi�cance of the existence of two decoding avalanches

becomes apparent and the URT property of EWF codes becomes highly pronounced.

For example, in the case γ1 = 0.11 and at the negative code overhead of ε = −0.1,

simulated EWF codes achieved MIB packet error rate of 7.61 · 10−5.

4.3.6 Precoding of EWF codes

It is well established that the 'light' degree distributions of LT codes result in a high

error �oors of their asymptotic packet error rate curves, as a number of input sym-

bols remains �uncovered� by the output symbols. Raptor codes solve this problem

85

-0.1 -0.05 0 0.05 0.1 0.15 0.2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

WLT MIB, θ
1
=0.210

WLT LIB, θ
1
=0.210

EWF MIB, γ
1
=0.084

EWF LIB, γ
1
=0.084

EWF MIB, γ
1
=0.110

EWF LIB, γ
1
=0.110

LT (EEP), Ω
raptor

Figure 4.11: Simulated comparison of packet error rates for WLT and EWF rateless UEP codes at
blocklength k = 5 · 103

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

y
MIB,∞, γ

1
=0.084

y
LIB,∞, γ

1
=0.084

y
MIB,∞, γ

1
=0.110

y
LIB,∞, γ

1
=0.110

MIB simulation, γ
1
=0.084

LIB simulation, γ
1
=0.084

MIB simulation, γ
1
=0.110

LIB simulation, γ
1
=0.110

Figure 4.12: Comparison of asymptotic and simulated packet error rates for EWF codes at blocklength
k = 2 · 104

86

0 0.05 0.1 0.15 0.2 0.25
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

γ
1

ov
er

he
ad

 ε

the min. ε for MIB error rate of 10−2

the min. ε for LIB error rate of 10−2

Figure 4.13: The minimum overheads necessary to reach packet error rate of 10−2 for both MIB and LIB
class.

by precoding LT codes by a good high-rate linear sparse graph codes. In the follow-

ing, precoding of EWF codes using high-rate sparse graph codes is considered. As

illustrated in Figure 4.14, separate precoding of di�erent classes of input symbols is

performed, i.e., during the precoding process the input symbols of the i-th impor-

tance class are encoded using the high-rate Half/LDPC code corresponding to their

importance class, and the obtained codeword represents a new set of input symbols of

the i-th importance class. Using precoding that separately precodes di�erent impor-

tance classes, the content of each importance class can be recovered at the receiver

side using the compound iterative decoder that operates on the overall factor graph

illustrated in Figure 4.14. Such separate precoding is useful since it allows for the in-

dependent calculations of the overhead values for di�erent importance classes in such

a way that a full recovery of symbols of di�erent importance classes is guaranteed.

In the following, we assume that precoding is performed over EWF codes with two

importance classes. Furthermore, we assume that outer high-rate LDPC codes over

both MIB and LIB classes are capable of correcting the packet error rate of 10−2.

Due to the strong URT property of EWF codes, this performance level is attained

at much lower overheads for the symbols in the classes of higher importance. Figure

4.13 illustrates this fact, where the minimum overheads of EWF codes necessary to

reach packet error rate level of 10−2 for both MIB and LIB are given as a function

of the parameter γ1. Hence, it is possible to use the parameter γ1 in order to tune

87

. . .

. . .

. . .

… … … …

…

…

. . .

. . .

1 2 k1 k2 ki
k = kr

+ + + + + + + + + + + + + + + +

{

{

{{
i-th window containing
precoded information symbols

high-rate LDPC
precoding

EWF
encoding

i-th class of EWF
encoded symbols

Figure 4.14: Precoding of EWF codes

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

10
−4

10
−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
/b

lo
ck

 e
rr

or
 r

at
e

MIB packet error rate
LIB packet error rate
MIB block error rate
LIB block error rate

Figure 4.15: The simulated packet and block error rates for the precoded EWF codes.

88

14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000
0

50

100

150

200

250

300

350

400

450

500

the number of received symbols

th
e

nu
m

be
r

of
 o

cc
ur

en
ce

s
of

 s
uc

ce
ss

fu
l d

ec
od

in
g

region of
LIB "decoding

avalanche"

region of
MIB "decoding avalanche"

Figure 4.16: The histograms of the number of received symbols required for the complete reconstruction
of the MIB and the LIB class.

the desired overheads for the two importance classes. For example, let us select

the value of γ1 = 0.12 in order to reach the packet error rate level of 10−2 with the

negative overhead εM ∼ −0.2 for the MIB class, and with the relatively small positive

overhead of εL ∼ 0.1 for the LIB class. Both classes are precoded using Half/LDPC

codes described in Section 2.8. The achieved packet error rates and block error rates

for both the MIB and the LIB classes at the blocklength of k = 2 ·104 are presented in

Figure 4.15, and the histograms of the numbers of symbols required for the complete

recovery of the MIB class and the LIB class are presented in Figure 4.16. These

results con�rm that the careful precoding of EWF codes can remove the error �oors,

while sustaining the strong UEP and URT property.

4.4 Scalable Video Multicast with UEP Fountain Codes

Robust transmission of packetised multimedia content to heterogeneous receivers is

a topic that currently attracts considerable interest [112, 116, 117, 118]. Whereas

state-of-the-art digital fountain multicast transmission over lossy networks is univer-

sally capacity approaching, there is typically a premise that a potentially in�nite

amount of the encoded packets per block of data can be created at the encoder (or

at least, the su�cient amount for the receiver with the highest packet loss rate to

decode successfully). However, in real-time scalable video streaming, typical fountain

multicast solutions face two problems. First, the amount of the encoded packets that

89

can be sent per message block is limited by delay constraints. Thus, the amount of

encoded packets per message block received by receivers with low access bandwidth or

very poor channel conditions would often be insu�cient. Indeed, even if the received

amount of encoded packets is slightly less than that needed for successful decoding,

the decoder is typically able to reconstruct only a negligible part of the message block.

Second, scalable video transmission requires UEP FEC schemes due to the unequal

importance of data in the data blocks of a scalable bitstream, and when scalable

video, e.g., H.264 SVC, is coupled with the typical error correction schemes (be it an

LT or a Raptor code, or even a �xed rate code such as Reed-Solomon) the output

bitstream no longer exhibits the property of scalability, which often results in the non-

e�cient video transmission. Namely, scalable video compression techniques enable

the receiver to progressively improve the quality of received video content with each

reconstructed layer in the message block, i.e., the message block contains a so called

base layer, reconstruction of which provides basic quality of video to low capability

receivers, and a number of enhancement layers, which enable receivers with increased

reception capabilites to experience higher video quality. Imperfect reconstruction of

base layer may signi�cantly deteriorate the quality of reconstructed data. For these

reasons, the scalable sources do not require that each receiver reconstructs the entire

message block, but that it reconstructs the base layer and as many enhancement

layers as possible. In recently proposed solutions, these problems are addressed by

encoding each layer of the scalable video content with a separate rateless code, which

maintains scalability of the coded bitstream at the cost of the increase of the sys-

tem complexity and necessity for utilising additional algorithms for rate allocation

optimisation and control [112, 117]. However, UEP fountain codes discussed in this

chapter are another way to deal with these problems, and in this section, a scalable

video multicast with EWF codes is considered. The advantages of this approach are

twofold: (a) the approach provides a solution based on the single coding scheme at

the transmitter, and the same encoded bitstream allows heterogeneous users to obtain

heterogeneous qualities of video content, (b) performance of EWF codes is analyti-

cally tractable, using the analytical tools we developed. The EWF solution adopts

the real-time delay constraints for scalable video to the reception overhead conditions

90

of heterogeneous receiver classes, and due to the UEP and URT properties of EWF

codes, more reliable reconstruction of the more important parts of the message block

is achieved.

4.4.1 System Setting

We consider a scenario where real-time scalable coded video stream is transmitted

from a video server to a number of heterogenous receivers over a lossy packet network

such as the Internet. At the video server side, the scalable video content is divided

into the message blocks, and each message block is separately encoded by an EWF

encoder. We assume that each message block consists of an equal number of k packets,

and that the importance of data decreases from the beginning towards the end of the

block. Typically, each message block contains one group of frames (GOF) of the

scalable video information stream. Due to delay constraints, the video server is able

to produce a limited amount of (1 + εs)k EWF encoded packets per message block.

This maximum code overhead εs > 0, is determined by the video server transmission

capabilities and by the bandwidth of the access link. We assume a setting with

a single EWF video streaming server, although by the same argument as for the

standard fountain codes, the implementation of the system with multiple EWF video

streaming servers (which contain the same video content) is trivial. EWF encoded

packets are multicast to the heterogeneous receivers, i.e., the receivers that experience

di�erent channel qualities. We classify receivers into r receiver classes based on their

packet loss rate. The i-th receiver class, i ∈ Nr, is characterised by the reception

overhead εi < εs, i.e., the receiver in the i-th class collects (1 + εi)k EWF encoded

packets per message block, out of the (1 + εs)k transmitted packets. Receiver class

index i is such that, εi < εj, whenever i < j, i, j ∈ Nr. The scalable video multicast

setting is illustrated in Figure 4.17.

Video server employs the EWF encoder with the same number of expanding win-

dows as the number of receiver classes. The task of the EWF encoder is to adapt

the EWF encoded bitstream to each receiver class simultaneously, that is, to allow

the �rst receiver class (with the worst reception conditions) to reliably recover the

�rst window of data, the second receiver class should be able to recover the second

91

lossy
network

…
kS)1(ε+

k)1(1ε+

k)1(2ε+

kr)1(ε+

video server

Figure 4.17: Scalable video multicast transmission to heterogenous receivers.

window of data, etc.

4.4.2 Design of the EWF coding scheme for scalable multicast

The scalable EWF multicast system design reduces to the design of the EWF code

ensemble which guarantees certain Quality of Service (QoS) to each of the receiver

classes. We select the probabilities of complete recovery of an importance class within

the message block at a receiver class as the QoS parameters. As a simple illustration,

for a given reception overhead εi at the i-th class of receivers and an EWF code en-

semble EWF(k, π(x), γ(x), {Ωi(x)}ri=1), we can calculate the asymptotic packet error

rates within each of the r importance classes. Let p(j)
i denote the packet error rate

within the i-th importance class at the j-th receiver class. Using p(j)
i , and under

the assumption that the decoding failures of di�erent input symbols are independent

events, the probability P
(j)
i that the i-th importance class of the message block is

completely reconstructed by the j-th receiver class is given by:

P
(j)
i = (1− p(j)

i)si , (4.14)

where si is the number of input symbols in the i-th importance class of the source

block. Note that, as we do not take into account the e�ect of precode which removes

the large error �oor arising in the packet error rate curves of the EWF codes, the

values of P (j)
i calculated this way will typically be large. Nonetheless, even such sim-

plistic assumptions can be used to illustrate the main advantage of EWF codes, that

92

we can tune code parameters to such values as to accommodate di�erent users with

di�erent QoS guarantees with the same bitstream. Thus, we use the set of proba-

bilities P (j)
i to de�ne QoS guarantees for each receiver class of the proposed scalable

EWF multicast system. It is worth noting that P (j)
i < P

(k)
i for j < k, i.e., a receiver

in the k-th class will be able to satisfy all the QoS guarantees imposed on the j-th re-

ceiver class. Therefore, it is convenient to de�ne QoS guarantees for the scalable EWF

multicast system as the following sequence of probabilities: (P
(1)
1 , P

(2)
2 , . . . , P

(r)
r). In

other words, for the i-th receiver class, we de�ne only QoS guarantee P (i)
i for recon-

struction of the i-th importance class. QoS guarantees for more important classes

of input symbols are already implicitly included in the QoS guarantees P (j)
j of the

receiver classes indexed with j < i. For the less imporant classes of input packets,

the i-th receiver class is not provided with any QoS guarantees.

The EWF code design problem for scalable EWF multicast system consists of de-

termining the EWF code parameters such that the corresponding EWF code achieves

certain reconstruction probabilites (P
(1)
1 , P

(2)
2 , . . . , P

(r)
r) for di�erent receiver classes,

given their reception overheads (ε1, ε2, . . . , εr).

4.4.3 Scalable EWF Multicast with two classes of receivers

For simplicity, let us assume a setting with r = 2 receiver classes (thereby, there are

also two windows in the EWF code), and that EWF encoder uses degree distributions

Ω1(x) = Ψ(π1k,δ=0.5,c=0.03)(x), and Ω2(x) = Ωraptor(x). With these simpli�cations, the

design of the EWF code EWF(k, π(x), γ(x), {Ωi(x)}ri=1) is determined by the two

independent variables: γ1 and π1 (the �rst window selection probability and the

fraction of the data contained in it). In general, as a result of this design process,

we obtain a region of (π1, γ1) pairs that satisfy the given QoS conditions. This set

can be empty, providing no solution for the requested constraints, i.e., the requested

values of (P
(1)
1 , P

(2)
2) at reception overheads (ε1, ε2).

As an example, we select the �light� constraints: ε1 = 0.1, ε2 = 1, and P (1)
1 = 0.95,

P
(2)
2 = 0.8, at the message block length of k = 3800 symbols. In words, the �rst class

of receivers is characterized by the 10% reception overhead, and the second class with

100% reception overhead. The QoS guarantees require that a receiver in the worse

93

Π
1

Γ 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

Π
1

Γ 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Π
1

Γ 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 4.18: The regions of (π1, γ1) which satis�es constraints on (a) P
(1)
1 at ε1 = 0.1, (b) P

(2)
2 at ε2 = 1,

and (c) the intersection of regions which satisfy P
(1)
1 = 0.95 and P

(2)
2 = 0.8.

class has a probability of complete reconstruction of the more important packets of

at least 95%, while a receiver in the second class should, in addition, be able to

fully reconstruct the less imporant packets with probability of at least 80%. The

asymptotic reconstruction probabilities of the more important packets at the �rst

class of receivers, P (1)
1 , and of the less important packets block at the second class

of receivers, P (2)
2 , are illustrated as functions of (π1, γ1) in Figure 4.18a and 4.18b,

respectively. On both �gures, one can track the changes of probabilities P (1)
1 and

P
(2)
2 represented by di�erently shaded regions. The intersection of the regions which

satisfy the given constraints are presented in Figure 4.18c. This region of (π1, γ1)

parameters satis�es both given constraints.

Figure 4.18c is a solution to a given design scenario. Since its output is a region

of admissible values of (π1, γ1), our next task is to select the operational pair (π1, γ1)

using a suitable criterion. A straightforward approach would be to select a solution

that maximizes π1 value, i.e., we place as many packets as possible into the more

important class. In this example, such a solution is the point (π1, γ1) = (0.365, 0.205)

that treats 36.5% of the message block as the more important data. Nonetheless, such

design considerations can be applied to any kind of data, whereas for the speci�c case

of a scalable video content, di�erent points from the (π1, γ1) region have di�erent

performance in terms of the video quality. Thus, the optimisation of EWF codes

94

based on video distortion measures is possible and can potentially provide a powerful

cross-layer solution for scalable video multicasting.

4.4.4 EWF code ensemble selection based on video distortion measures

To select an �optimal" (π1, γ1) point from the region obtained as an output of the

EWF multicast system design, we apply the distortion-based optimisation that takes

into account the expected video distortion at the receiving end [106]. Namely, let the

message block be divided into r layers of s1, s2, . . . , sr symbols. Video distortion at

the receiving end is typically based on the number of correctly received consecutive

layers until the �rst layer for which a packet error occurs. We denote a probability

of correct reconstruction of each of r layers as P1, P2, . . . , Pr.

The transmission scheme that minimises the expected distortion of video content at

the receiving end is characterised by the expected peak signal-to-noise ratio (PSNR)

measure:

PSNRavg =
r∑
i=0

P (i) · PSNR(i), (4.15)

where P (i) is the probability that only the �rst i consecutive layers are correctly

received, i.e.,

P (i) =


1− P1 for i = 0∏i

j=1 Pj · (1− Pi+1) for i = 1, 2, . . . , r − 1∏r
j=1 Pj for i = r,

(4.16)

PSNR(0) = 0, and for i > 0, PSNR(i) represents the PSNR when the �rst i

layers are successfully reconstructed, averaged over the frames of the video segment.

Di�erent models for calculating PSNR values can be used (cf. [106] and references

therein), but this is not the focus of our attention here.

In the multicast scenario, we average PSNR values over the receiver classes:

PSNRavg =
1

r

r∑
j=1

PSNR(j)
avg, (4.17)

where PSNR(j)
avg is the average PSNR in the j-th receiver class.

Assume now that the video server is multicasting H.264 SVC coded video stream

95

Table 4.1: EWF window contents for H.264 SVC Stefan sequence.

MIB Window k1 π1 Bit Rate [kbps] Y-PSNR [dB]
Content

BL only 400 0.105 292.37 25.79
BL + 1 EL 700 0.185 510.65 27.25
BL + 2 ELs 875 0.23 636.56 28.14
BL + 3 ELs 1155 0.305 839.82 29
BL + 4 ELs 1550 0.41 1127.1 29.51
BL + All ELs 3800 1 2764.55 40.28

with EWF codes. H.264 SVC [107] is the scalable extension of H.264/AVC standard

for video compression [119]. H.264 SVC outperforms previous scalable video coders

while providing temporal, spatial, and quality scalability with backwards compati-

bility with H.264/AVC. It maintains key features of H.264/AVC while introducing

new tools necessary for maximising scalability, such as new inter-layer prediction of

motion and residual, the concept of key pictures, single motion compensation loop

decoding providing a decoder complexity close to that of single-layer coding. For a

particular video sequence, such as CIF Stefan (30 fps, 352× 288) H.264 SVC deter-

mines the division into the base layer (BL) and the enhancement layers (EL) which

gradually improve the overall video quality. We consider the video sequence with

a BL and 14 ELs, segmented into GOFs of size 16 frames, such that every 16/30

seconds the EWF encoder is supplied by a new GOF message block. The message

block size is approximately 190000 bytes and, assuming the packet sizes of 50 bytes,

we obtain the message block size of k = 3800 symbols. We assume that the base

layer is placed in the �rst EWF window, with the minimum window size necessary

to accommodate the base layer set to k1 = 400 symbols. Apart from the base layer,

we may place additional enhancement layers together with the base layer inside the

�rst EWF window. Several possible divisions of the message block into the classes

of input packets are presented in Table 4.1, where for each divison, the absolute and

relative sizes (k1 and π1) of the resulting MIB window are given, as well as the bit

rate and the average PSNR upon complete recovery of the �rst window.

Now, these considerations can be used to �nd the optimal point (π1, γ1) from

the region given in Figure 4.18c. However, as the division of the message block

into windows is dictated by the number of enhancement layers placed in the MIB

window, we can perform the distortion-based optimisation only for the values of π1

96

0.08 0.1 0.12 0.14 0.16 0.18 0.2
32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

Γ
1

P
S

N
R

av
g [d

B
]

Π
1
=0.185

Π
1
=0.23

Π
1
=0.305

Figure 4.19: Numerical example of γ1 optimisation in EWF video multicast for the values of π1 ∈
{0.185, 0.23, 0.305}.

that accommodate BL and a whole number of ELs, i.e., the values of π1 given in

Table 4.1. Therefore, our optimisation problem reduces to the optimisation of γ1 for

a �xed value of π1.

Figure 4.19 provides an example of γ1 optimisation for the following values of

π1 = {0.185, 0.23, 0.305}, i.e., when the �rst EWF window contains BL and one,

two or three ELs, respectively. We maintain the constraints ε1 = 0.1, ε2 = 1, and

P
(1)
1 = 0.95, P

(2)
2 = 0.8. The optimum values γ∗1 = {0.11, 0.135, 0.17} provide maxi-

mum average PSNR values of PSNRavg = {33.036, 33.321, 33.359} dB respectively.

PSNRavg values are obtained by averaging over the two receiver classes.

4.4.5 Simulation Results

To verify the predictions of the asymptotic analysis, numerical experiments were

performed. For values π1 = {0.185, 0.23, 0.305, 0.405} we searched for the interval

of values of γ1 that satisfy the given constraints. In each simulation experiment,

the total number of the message blocks transmitted was set to 3000. We determine

the number of unsuccessfully decoded blocks of more important packets and less

important packets and calculate approximate P (1)
1 and P (2)

2 values correspondingly.

The simulation results are presented in Figure 4.20. Although the simulation results

are applied on the �nite-length realistic scenario, they con�rm our analysis based

on the asymptotic probability expressions and the obtained numerical solutions, i.e.,

97

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

Π
1

Γ 1

Γ
1,min

Γ
1,max

Figure 4.20: Admissible (π1, γ1) region for EWF codes: simulation results.

the results predicted by theory closely match the results obtained by the simulation

experiments.

4.4.6 Precoded EWF Codes

The simplistic assumptions in this Section resulted in the underestimates of the po-

tential of EWF code ensembles in scalable video multicasting. Indeed, disregarding

possible precode e�ects produces modest values of the probabilities of the complete

recovery of an importance class within the message block. Large improvements are

obtainable by concatenating EWF code to a high-rate sparse graph precode which

alleviates the large error �oors in the asymptotic recovery probabilities. These er-

ror �oors combined with the assumption (4.14) that each input symbol of the i-th

importance class at the j-th receiver class is decoded independently with probability

p
(j)
i , give modest values of the probability P (j)

i of the complete reconstruction of the

i-th importance class at the j-th receiver class. Thus, even at the overheads as high

as ε2 = 1 in the example setting explored above, the QoS constraint of P (2)
2 = 0.8

must su�ce. In order to increase QoS guarantees, we add redundancy within each of

the importance clases prior to the EWF encoding process by precoding each of the

importance classes by a high rate Half/LDPC code. This way, once the decoding of

an EWF code allows recovery of a su�cient fraction of the importance class source

block, precode should be able to ��nish o�� decoding with a vanishing probability of

98

0.1 0.15 0.2 0.25 0.3
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Π
1

Γ 1

Γ
1,min

Γ
1,max

Figure 4.21: Admissible (π1, γ1) region for precoded EWF codes: simulation results.

error, which dramatically increases the probability of complete reconstruction.

Simulation experiments were performed to determine the performance of a pre-

coded EWF code with the degree distribution Ωraptor(x) on both windows and the

source block of length k = 3800 symbols. The admissible (π1, γ1) region for recep-

tion capabilities ε1 = 0.05, ε2 = 0.2 and QoS guarantees P (1)
1 = 0.99, P

(2)
2 = 0.95

is presented in Figure 4.21. The region was calculated by determining the inter-

val of values of γ1 such that the required QoS constraints are satis�ed for values

π1 ∈ {0.105, 0.185, 0.23, 0.305}. This region is non-empty which means that precoded

EWF codes with suitably chosen parameters can accommodate large improvements

in the QoS guarantees, and consequently in the PSNR values, even for the receiver

classes with modest channel qualities. We conclude that the robust scalable video

multicast is possible by combining precoding with the �exibility of the EWF design.

4.5 Concluding remarks

Fountain codes for unequal error protection are a natural way to protect each video

layer from packet loss with separate robustness in scalable video broadcast/multicast

transmission. We overviewed two approaches to unequal error protection coding

based on fountain codes and explored their asymptotic analysis and design, as well

as their immediate applications. Expanding Window Fountain (EWF) codes, in par-

ticular, exhibit advantageous properties and high potential to result in robust video

99

broadcasting solutions, and yet, they are amenable to mathematical rigour and var-

ious design considerations. In addition to results reported in [6, 7, 8], the newest

practical investigations of EWF codes [115] and their theoretical extensions [120]

both encourage research e�orts to further characterize and understand these coding

schemes. In particular, [115] uses EWF codes in the �eld measurements at the Turku

DVB-h test network in Finland. Their results demonstrate that �real-time trans-

mission of scalable video can be achieved with a subjectively perceived good quality

when using EWF codes.�

100

Chapter 5

Fountain codes for Distributed

Source Coding

5.1 Introduction

Distributed source coding (DSC) problem is the problem of lossless compression of

multiple correlated sources. From the seminal Shannon's source coding theorem, the

information theoretic limit on the total compression rate of two correlated sources

X and Y is their joint entropy H(X, Y). However, another celebrated result, by

Slepian and Wolf [121], asserts that, remarkably, the separate compression (Slepian-

Wolf Coding - SWC) su�ers no rate loss compared to the case of joint compression.

Namely, let two separate encoders observe sources X and Y . Each of the sources is

encoded separately and the encoded stream from both encoders is jointly decoded

by a single decoder as shown in Figure 5.1. Then, the admissible rate region for the

pairs of rates (RX , RY) is given by:

RX ≥ H(X|Y)

RY ≥ H(Y |X)

RX +RY ≥ H(X, Y), (5.1)

where RX and RY are the compression rates corresponding to the sources X and

Y , respectively. This rate region is illustrated in Figure 5.2. The signi�cance of the

result by Slepian and Wolf is clear when we compare the rate region (5.1) to that

101

encoder 1

encoder 2

X

Y
decoder

X

Y

XRrate

YRrate

Figure 5.1: Slepian-Wolf coding of two correlated sources

)|(YXH)(XH),(YXH

)|(XYH

)(YH

),(YXH

admissible
rate region

XR

YR
asymmetric

SWC

symmetric
SWC

Figure 5.2: Admissible rate region for Slepian-Wolf coding

of the separate encoders oblivious of the correlation, which is given by RX + RY ≥

H(X) + H(Y). Thus, Slepian-Wolf theorem tells us that the separate encoders can

exploit the correlation of the sources to achieve the same rate region as an optimal

joint encoder, i.e., RX +RY ≥ H(X, Y).

The scenario in which one of the sources Y is fully known at the decoder, i.e.,

it is independently compressed using an entropy coder with rate RY = H(Y), while

the source X is compressed using the estimate of the correlation between X and

Y (with rate RX ideally just above H(X|Y)) is one of the simplest and the most

widely studied cases of distributed source coding. It is commonly referred to as the

asymmetric Slepian-Wolf coding or coding with decoder side information. On the

other hand, one can also study symmetric Slepian-Wolf coding, where RX = RY .

The optimal rate pairs for these two cases are illustrated in Figure 5.2.

In general, the correlation between the sources X and Y can take di�erent forms.

Indeed, a common way to model the correlation is to view X and Y as the input

and the output, respectively, of a certain communication channel, referred to as the

102

correlation channel or the virtual channel. In this Chapter, the focus lies on the use

of fountain codes for some special cases of the DSC. The following example outlines

an instance of Slepian-Wolf coding, named the erasure correlation coding, which is

our starting point in the study of fountain codes for DSC.

Example 34 (Erasure correlation coding). Let X ∼ Bernoulli(1/2),

U ∼ Bernoulli(1/2) and V ∼ Bernoulli(q) for some q, 0 ≤ q ≤ 1 be the inde-

pendent binary random variables, and let:

Y = X + UV. (5.2)

Let two separate encoders observe X and Y , while decoder observes V apriori.

From the decoder's point of view, X and Y are two correlated sources: whenever a

realisation of V is equal to 0, realisations of X and Y are equal. However, when a

realisation of V is equal to 1, X and Y can take any two binary values with equal

probability. With some abuse of the notation, we can view X and Y (or vice versa) as

the input and the output of a binary erasure channel with erasure probability q, since

Y reveals no information about X, when V = 1 (variable V serves as the erasure

indicator). The admissible rate region can be calculated as:

RX ≥ H(X|Y, V) = q

RY ≥ H(Y |X, V) = q

RX +RY ≥ H(X, Y |V) = 1 + q. (5.3)

We will study both the asymmetric and the symmetric instance of the problem

outlined in Example 34. In the asymmetric case, Y is partial information about X,

and can with no loss of generality be identi�ed with the output of a binary erasure

channel (BEC) whenX is the input. When talking about asymmetric SWC in general,

we will extend this formalism which views Y as the output of a communication

channel to include other channel models, such as binary input additive white Gaussian

noise channel (BIAWGNC) and binary symmetric channel (BSC). This extension

allows us to formulate fountain code design in the uncoded side information problems

[122]. A clear bene�t of a rateless code construction for asymmetric SWC is that it

103

simultaneously represents a distributed joint source-channel coding scheme. Namely,

rateless scheme would yield both the distributed source coding gains, by utilising the

presence of side information, and the channel coding gains, as it naturally enables

a reliable transmission over lossy links. The robust rateless distributed source code

design in the asymmetric SWC has applications in the data synchronisation scenarios

[123], where each receiver typically has an outdated version of some common database,

as well as in the cross-layer design of scalable video transmission [99].

5.2 Fountain Coding with Decoder Side Information

In the following, the design of fountain codes is considered as applied to the problem of

multicast and broadcast transmission to the receivers which have access to an apriori

side information Y about the source X. The focus is on the fountain code design

problem for the three special cases of the correlation channel (1) erasure correlation or

coding with partial information: Y is a partial information about X, i.e., the output

of a binary erasure channel (BEC) when X is the input; (2) Gaussian correlation:

Y = X + N , and N ∼ N (0, σ2), where X is a binary information source on X =

{−1, 1}; and (3) binary symmetric correlation, where Y is the output of a binary

symmetric channel (BSC) with probability p when X is the input.

When trasmission is noiseless, coding with side information is an instance of DSC,

where one of the sources is fully known at the decoder (decoder side information).

Thus, our goal is to incorporate both the distributed source compression and the

channel coding gains in the fountain code design. The range of the achievable com-

pression rates in the case of the noiseless transmission is given by RX ≥ H(X|Y),

whereas the range of the achievable overall source-channel rates in the case of a noisy

transmission channel C is R̂X ≥ H(X|Y)/Cap(C).

When employing fountain codes in coding with decoder side information, two dis-

tinct approaches can be identi�ed. The �rst solution is to employ the systematic

Raptor code design, whereby reducing the decoder side information problem to a

channel coding problem at the cost of a higher encoding and decoding complexity.

The authors of [92] have addressed this approach independently. The second solution

is to employ the standard (non-systematic) fountain codes with the modi�ed code pa-

104

encoder

ac
tu

al
 c

ha
nn

el
(r

ec
ei

ve
r

1)

vi
rt

ua
l c

ha
nn

el
(r

ec
ei

ve
r

1)

. . .

decoder 1

),...,,(11
2

1
1

1
kyyy=y ry

),...,,(21 kxxx=x

,...),(21 zz=z

,...),(1
2

1
1

1 ww=w
),...,,(111*1

121 tiii www=w
rw

*rw

ac
tu

al
 c

ha
nn

el
(r

ec
ei

ve
r

r)

vi
rt

ua
l c

ha
nn

el
(r

ec
ei

ve
r

r)

decoder r
rx1x

Figure 5.3: Fountain coded data multicast with side information.

rameters, i.e., to adapt the fountain code parameters to this new setting. The authors

of [92] dismiss this non-systematic fountain code design as not applicable to DSC,

whereas our results establish them as a sub-optimal yet attractive solution. In the

following, we present novel fountain code design methods which utilise the presence of

decoder side information and aim to provide both the distributed source compression

scheme and the channel coding scheme in a single (non-systematic) fountain code.

For coding with partial information, we develop a code optimisation procedure which

yields superior performance compared to the coding schemes proposed in [123], where

similar adaptive rateless coding scenario has been independently studied.

The considered system model is presented in Figure 5.3. The binary information

source X is correlated with decoder side information Y j available at the receiver j,

j ∈ Nr, via some virtual correlation channel CjV = CV , which is identical for all the

receivers. This means that di�erent receivers merely see di�erent realisations of the

same random variable Y , which is the output of CV . The encoder processes a data

sequence x = (x1, . . . , xk) of length k at a time, and multicasts a potentially in�nite

fountain encoded stream z = (z1, z2, . . .), z = fenc(x). The receiver j receives the

stream through an actual transmission channel CjA, which can di�er across the set of

receivers. The channel outputs are depicted as the �noisy� stream wj = (wj1, w
j
2, . . .).

The receiver j picks up any nj channel outputs wj∗ = (wji1 , w
j
i2
, . . . , wjinj

) from the

105

incoming stream of symbols, aware of their coordinates within a stream, where ob-

served rate is R̂j = nj/k ≥ H(X|Y)/Cap(CjA), and tunes out from the multicast.

By taking advantage of the side information vector yj = (yj1, . . . , y
j
k) the receiver j

decodes: x̄j = fdec(w
j∗,yj). Our objective is to devise the encoding strategy such

that it is possible to have the rate tj/k at the receiver j close to the optimal value,

i.e., the Slepian-Wolf limit in the noisy channel case [122], H(X|Y)/Cap(CjA), and to

still allow for a high probability of successful decoding, i.e., of x̄j = x, j ∈ Nr.

We can now focus on some cases of the above system model where CV and CjA,

j ∈ Nr, are special channel models. In the simplest case, we assume that CV is

a binary erasure channel (BEC) with a known erasure probability pe, whereas CjA,

j ∈ Nr, are the erasure channels with di�erent or unknown erasure probabilities.

Fountain code design for this case is equivalent to the fountain code design for the

asymmetric erasure correlation coding in Example 34. Consider the following problem

of the packetised data dissemination in a network as a motivating example for seeking

a robust fountain code design methodology in the outlined case.

Example 35. A source node in a network contains a large number k of data packets

to be disseminated to a large number of receivers over the lossy links. However, each

receiver already knows a subset of the data packets, i.e., approximately (1 − pe)k

packets for 0 < pe < 1. Di�erent receivers can have knowledge of di�erent sets of

packets. This could have arisen, e.g., as a result of the transmission from the other

source nodes in the network. Now, since the transmitter has no knowledge of which

packets are available at which receivers, it encodes over the entire set of k packets

and broadcasts the resulting encoded packets.

Ideally, a rateless code is the solution sought after for the setting outlined in the

above Example, as it would be able to naturally adapt its rate to di�erent or variable

packet loss rates across the set of receivers. Alternatively, some kind of Hybrid-ARQ

scheme could be employed, but this requires feedback communication channel and due

to a large number of receivers, feedback resources may be severely limited. Clearly,

each receiver must receive at least pek encoded packets to successfully recover the

unknown packets. But how close can we get to this lower bound in the broadcast

setting? We study this problem in detail in the following two Sections.

106

1x 2x 3x kx 1+kz 2+kz 3+kz… …

k systematic symbols

encoded symbols1y 2y 3y ky

1x 2x 3x kx… …

precode parity
symbols

k intermediate
symbols

…

precode parity
checks

Figure 5.4: Systematic Raptor for coding with partial information.

5.3 Systematic Raptor coding with decoder side information

We have seen in Section 2.8 that it is possible to design a systematic fountain code at

the expense of the increase of encoding/decoding complexity. Namely, it is necessary

to explicitly calculate the vector of intermediate symbols x̄, for each vector of message

symbols x, such that the message symbols will be replicated in the fountain encoded

stream. This is performed by solving the set of code constraints processing (CCP)

equations given in (2.30). The computation of the intermediate symbols with Gaus-

sian elimination is generally quadratic in k, unless a special structure of LT generator

matrix is imposed such that the linear system (2.30) can be solved with the direct

elimination of one unknown at a time.

The possibility of a systematic fountain code seems as a natural solution for the

problem of coding with partial information. Namely, our setting where both CV and

CA are erasure channels can be reduced to the channel coding problem of reliable

transmission over a pair of binary erasure channels, under the constraint that the

transmission of the uncoded message symbols x through CV precedes the transmission

of the non-systematic encoded symbols zk+1, zk+2, . . ., and results in the decoder side

information y. Hence, a universal (applicable to any erasure channel) systematic

fountain code would be su�cient to optimally solve the proposed problem. The

application of systematic Raptor design in this setting is demonstrated in Figure 5.4.

107

The encoder needs to calculate the intermediate symbols x̄ for each message vector

via Gaussian elimination, and then proceeds with the encoding from the (k + 1)-

th row of the generator matrix, i.e., the strategy consists of transmission of only

the non-systematic encoded symbols. The decoder directly embeds the decoder side

information y in the decoding graph. The erased symbols in y are simply ignored,

whereas nonerased symbols are interpreted as the channel outputs corresponding to

the systematic symbols, i.e., to the �rst k symbols of the fountain encoded stream.

Upon recovering the intermediate symbols, an additional encoding step is performed

in order to calculate the (unknown part of the) actual message x by multiplying

the intermediate symbols x̄ with the �rst k rows of the LT generator matrix. The

universality of (systematic) Raptor codes for the erasure channels implies that such

an application of the systematic Raptor codes to the proposed problem results in a

nearly optimal design, regardless of erasure probabilities of CV and CA.

However, our primary aim in this contribution is to analyse and improve the per-

formance of simpler, i.e., non-systematic LT and Raptor codes when applied to the

proposed problem of multicasting with decoder side information. The advantage of

the non-systematic fountain codes is the simplicity of design and the lower compu-

tational complexity. The reduction in computational complexity arises for the two

principal reasons: (i) systematic Raptor codes require preprocessing to ensure that

system of equations (2.30) can always be solved, as well as the additional step when

decoding: multiplication of the intermediate symbols by G
[1:k]
LT to recover the original

message; (ii) decoding of non-systematic fountain codes in the decoder side informa-

tion scenario is performed on a signi�cantly smaller decoding graph: if we assume

that the number of nodes arising from precoding is negligible, an ideal systematic

code performs decoding on a graph with at least k(1 + H(X|Y)
Cap(CA)

) check nodes, whereas

an ideal non-systematic code requires slightly more than k H(X|Y)
Cap(CA)

check nodes. As the

decoding time is proportional to the size of the decoding graph, a severalfold decrease

in computational complexity is possible, as illustrated by the following example.

Example 36. Let CV be a BEC with erasure probability pe = 0.1 and let the trans-

mission channel be noiseless. An ideal systematic fountain code requires 1.1k factor

nodes, whereas an ideal non-systematic fountain code requires only 0.1k factor nodes.

108

5.4 Non-systematic fountain coding with partial information

Their lower computational complexity motivates us to study the non-systematic foun-

tain codes for coding with partial information. However, it is intuitively clear that the

non-systematic fountain codes designed for the standard channel coding problems are

ine�cient in coding with partial information, since the standard output node degree

distributions are too sparse to accommodate useful information within the encoded

symbols. Namely, an arbitrary input symbol is known at the decoder apriori with

probability (1 − pe), and an arbitrary encoded symbol of degree d is thus useless to

the decoder with the probability (1 − pe)
d, a prohibitively large value for small d.

Thus, it is necessary to shift the degree distributions Ω(x) towards higher degrees,

while sustaining their compliance with the BP peeling decoder.

5.4.1 Degree distribution in the decoding graph

Let us consider a performance of the non-systematic fountain coding scheme with

partial information at a single receiver. We assume that the encoder employs a stan-

dard LT code with an output degree distribution Φ(x) to generate as many encoded

packets as necessary and that the transmission of the encoded stream occurs over

an erasure channel of an undetermined erasure probability. The receiver collects

n = pek(1 + ε) correctly received packets, where pe is the correlation channel erasure

probability. Note that pek packets correspond to the optimal compression rate, since

H(X|Y) = pe. The decoder then forms the decoding graph and removes the input

nodes corresponding to the packets available from the side information, appropriately

updating the output nodes. The peeling decoder can be executed at this point. How-

ever, once the known input nodes have been removed, the output degree distribution

changes, and such changed degree distribution determines the performance of the

peeling decoder. One can relate the �starting� degree distribution Φ(x) to the degree

distribution Ω(x) after removal of the known input nodes from the decoding graph

with the following Lemma.

Lemma 37. Let Φ(x) =
∑k

d=1 Φdx
d and Ω(x) =

∑k
d=1 Ωdx

d be respectively the gen-

erating polynomials of the output degree distribution used at the encoder (incoming

degree distribution) and the output degree distribution after removal of the known

109

input nodes from the decoding graph (resulting degree distribution), then:

Ω(x) = Φ(1− pe + pex). (5.4)

Proof. The probability that an arbitrary output node has degree i after the removal

of the known input nodes conditioned on its degree before removal being j ≥ i is

given by
(
j
i

)
(1 − pe)j−ipie. Thus, the relation between the distributions Φ and Ω is

given by

Ωi =
k∑
j=i

Φjp
i
e(1− pe)j−i, i = 1, . . . , k, (5.5)

which is equivalent to (5.4).

5.4.2 Shifted soliton distributions

In [95], the authors independently studied an equivalent problem. They attempted

the modi�cation of the LT degree distribution design for erasure channels under the

assumption that a �xed number of input packets is already available at the receiver

side. The code design was aimed for the data synchronisation scenarios [123], where

each receiver typically has an outdated version of a large database, and seeks to

recover only its small supplementary portion. The authors introduced the shifted

robust soliton distribution (SRSD), with the superior performance over the robust

soliton distributions in such a setting. The rationale behind the shifted robust soliton

distribution is simple. If the original message x contains k packets and τ of those

packets are known at the decoder apriori, each output node of the decoding graph

will have (τ/k)-fraction of edges removed from the graph prior to the execution of

the BP decoding. For the cases where the number of the known input packets is not

�xed, but is rather modelled as a random variable with a known probability mass

function, the authors introduce the distributionally shifted robust soliton distribution

(DSRSD).

De�nition 38. Let Ψ(k,c,δ)(x) =
∑k

d=1 Ψ
(k,c,δ)
d xd denote a robust soliton distribution

on Nk with parameters c and δ and let ()Z denote rounding to the nearest integer.

(a) The shifted robust soliton distribution (SRSD) Φ(k,c,δ,τ)(x) =
∑k

d=1 Φ
(k,c,δ,τ)
d xd on

Nk with parameters c and δ, shifted by a nonnegative integer τ < k, is ∀j ∈ Nk given

110

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

degree d

pr
ob

ab
ili

ty

RSD(k=1000,c=0.03,δ=0.5)
SRSD(k=1000,c=0.03,δ=0.5,τ=500)
DSRSD(k=1000,c=0.03,δ=0.5,τ ∼ Binomial(1000,0.5))

Figure 5.5: Comparison of distributions RSD, SRSD and DSRSD.

by:

Φ
(k,c,δ,τ)
j =

 Ψ
(k−τ,c,δ)
i ∃i ∈ Nk−τ : (i

1−τ/k)Z = j,

0 otherwise.
(5.6)

(b) The distributionally shifted robust soliton distribution (DSRSD) Θ(k,c,δ,π)(x) =∑k
d=1 Θ

(k,c,δ,π)
d xd on Nk with parameters c and δ, shifted by a distribution π(x) =∑k

τ=0 πτx
τ on {0} ∪Nk, is ∀j ∈ Nk given by:

Θ
(k,c,δ,π)
j =

k−1∑
τ=0

πτ · Φ(k,c,δ,τ)
j . (5.7)

A comparison in Figure 5.5 depicts the probability mass functions of the robust

soliton distribution for k = 1000, c = 0.02 and δ = 0.5; SRSD with the same

parameters c, δ for the case where τ = 500 input packets are known apriori; and

DSRSD with the same parameters c, δ where the number of the known packets

behaves as a binomial random variable on 1000 trials with the success probability of

0.5, i.e., π(x) = (0.5 + 0.5x)1000.

The simplicity of the design of SRSD and DSRSD makes them appealing for

the applications where receivers have access to the partial information about the

source. However, in the remainder of this Section, we provide a more accurate degree

distribution design for such applications. We start by proving the failure of SRSD

and DSRSD to approach the Slepian-Wolf limits, as k →∞.

111

5.4.3 Penalties of the shifted soliton distributions

For the sake of simplicity, we will assume that k/(k−τ) = λ ∈ N. This means that the

correlation channel erasure probability pe can be expressed as pe = 1/λ. In that case,

as k → ∞, both SRSD shifted by τ and DSRSD shifted by a binomial distribution

with mean τ converge pointwise to the limiting shifted soliton distribution given by:

Φ∞,λ(x) =
∑
i≥2

xλi

i(i− 1)
. (5.8)

Note that Φ′∞,λ(x) = −λxλ−1 log(1− xλ). According to Lemma 37, we can calculate

the limiting degree distribution in the decoding graph after the removal of the known

input nodes as Ω∞,λ(x) = Φ∞,λ(1− 1
λ

+ 1
λ
x) = Φ∞,λ(

x+λ−1
λ

). Note that

Ω′∞,λ(x) =
1

λ
Φ′∞,λ(

x+ λ− 1

λ
). (5.9)

Once the known input nodes have been removed from the decoding graph, decoding

proceeds as a standard peeling decoder, with pek input nodes on average and n =

(1 + ε)pek output nodes. Thus, we can apply the vanishing error rate condition

(2.15) at code overhead ε with respect to the Slepian-Wolf limit in order to test

the asymptotic performance of the ensembles whose degree distributions converge

pointwise to the limiting shifted soliton distribution. Namely, if SRSD and DSRSD

approach the Slepian-Wolf limit, it follows that ∀z ∈ (0, 1],∀ε > 0,

(1 + ε)Ω′∞,λ(1− z) + log(z) ≥ 0. (5.10)

We now calculate the right hand side in (5.10) as:

(1 + ε)Ω′∞,λ(1− z) + log(z)

=
1 + ε

λ
Φ′∞,λ(1−

z

λ
) + log(z)

= −(1 + ε)(1− z

λ
)λ−1 log(1− (1− z

λ
)λ) + log(z), (5.11)

whereby we can directly conclude that (5.10) cannot be satis�ed ∀z ∈ (0, 1],∀ε > 0

112

whenever λ > 1. Therefore, SRSD and DSRSD cannot achieve the Slepian-Wolf limit.

The following example lower bounds the code overhead penalty, i.e., the gap to the

Slepian-Wolf limit, for λ = 2, i.e., for pe = 1
2
.

Example 39. Let λ = 2. When inserting (5.11), (5.10) simpli�es to:

z ≥ (z − z2

4
)(1+ε) 2−z

2 . (5.12)

If the condition (5.12) is to be satis�ed ∀z ∈ (0, 1], i.e., we require that the error rate

is vanishing, we obtain that the code overhead is lower bounded with ε ≥ 0.1227.

On the other hand, when code overhead vanishes, i.e., ε→ 0, the error rate is lower

bounded with δ ≥ 0.6995.

We conclude that both SRSD and DSRSD typically exhibit an "all-or-nothing"

decoding behavior. The error rate vanishes only after a large threshold code overhead,

whereas for smaller code overheads, error rate stays large. As we will see in the

following, better performing distributions can be designed by the linear programming

optimisation.

5.4.4 Optimisation of the incoming distributions

From Lemma 37 we also have ω(x) = φ(1 − pe + pex), where φ(x) = Φ′(x)
Φ′(1)

is the

incoming edge perspective output degree distribution. Thus, we can derive the And-

Or tree analysis of the performance of the incoming distribution Φ(x), captured by

the following corollary of Lemma 37:

Corollary 40. Assume that the encoder uses an LT(k,Φ(x)) ensemble for coding with

partial information with correlation erasure probability pe. Then the packet error rate

within the class of the input packets unknown at the decoder prior to the transmission,

converges to y = liml→∞ yl, as k →∞, where yl is given by:

y0 = 1, (5.13)

yl = exp (−αφ(1− peyl−1)) ,

and α is the average input degree on the decoding graph. The packet error rate across

the entire message is given by ŷ = pe · y.

113

This way we have derived the asymptotic analysis of the performance of LT code

ensembles for coding with partial information by using Lemma 37 and by applying

the standard analysis of LT codes from Section 2.4. However, the same result could

have been obtained directly, by applying the decentralised distributed fountain coding

Theorem 24 for the informed collector nodes (cf. Section 3.3). Indeed, it is su�cient

to divide the raw data packets into two classes A1 and A2 of sizes pek and (1− pe)k

respectively and assume that the collector node has access to the subblock x|A2
in

addition to the encoded packets produced by a uniform LT code over the entire

message block.

Now, Corollary 40 tells us that an LT (k,Φ(x)) ensemble has the asymptotic packet

error rate δ or less, if and only if exp(−αφ(1 − pez)) < z, ∀z ∈ [δ, 1]. Thus, we can

�x the desired packet error rate δ and transform this condition in terms of a function

linear in variables φd, discretise the interval [δ, 1] to m equidistant points and, hence,

obtain the set of linear programs LPpartial(pe, δ, dmax,m):

LPpartial : min
1

pe

dmax∑
d=1

φd
d

φ(1− pezi) ≥ − ln(zi), i ∈ Nm (5.14)

φd ≥ 0, d ∈ Ndmax .

where δ = z1 < z2 < · · · < zm = 1 are equidistant points on [δ, 1], and dmax is

the maximum allowed degree of Φ(x). Figure 5.6 shows the asymptotic and the

simulated �nite length packet error rates for the degree distributions obtained by the

linear program (5.14) with dmax = 100, δ = 0.01, and pe ∈ {0.2, 0.3, 0.4, 0.5}, with the

grid z1 < z2 < · · · < zm of granularity 0.001. The block length used in simulations

was k = 6 · 104.

Unfortunately, the code design with linear programs in (5.14) necessarily results

in the code overhead penalty: for �xed δ, the code overhead ε with respect to the

Slepian-Wolf limit stays bounded above some penalty value ε∗ > 0 as the maximum

degree dmax → ∞. Namely, as f(z) = 1 − pez is a non-negative decreasing function

on [0, 1], we can apply Theorem 16 and duality theory (cf. Appendix B) to calculate

the minimum support Nd̄(δ) of the solution to the undiscretised version of the linear

114

−0.1 −0.05 0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

δ=0.01

p
e
=0.5

p
e
=0.4

p
e
=0.3

p
e
=0.2

Figure 5.6: Asymptotic (full lines) and simulated (dashed lines) packet error rates of the degree distribu-
tions with the asymptotic packet error rate δ = 0.01 at the minimised code overhead for correlation BEC
with pe ∈ {0.2, 0.3, 0.4, 0.5}.

program (5.14). The dual program is given by:

max
PZ(z)

E[− lnZ] (5.15)

E[(1− peZ)d−1] ≤ 1

ped
, d ∈ Nd̄(δ)

Z ∈ [δ, 1].

This dual program enables us to lower-bound the code overhead penalty, as for any

feasible solution Z of the dual, the value of the objective function of the dual ψdual is

less than the optimal value of the objective function of the primal ψ∗primal = 1 + ε∗.

We can obtain a feasible solution of the dual by looking at the discrete distributions

with �nite support, e.g., on a uniform grid. The lower bounds obtained this way, for

δ = 0.01 and the uniform grid of granularity 0.001 are shown in Figure 5.7 for various

values of the correlation erasure probability pe and compared to the penalties arising

from SRSD and DSRSD, calculated in the analogous manner as that in Example 39.

Note that for the case of pe = 1, i.e., the standard channel coding problem, there

is no penalty (ε∗ = 0). Namely, an LT code ensembles whose degree distributions

converge pointwise to a limiting soliton distribution Ψ∞(x) approach the Shannon

capacity, whereas there is a clear gap with pe < 1. Inspection of these values and

the comparison to the results in Figure 5.6 demonstrate that these lower bounds are

sharp.

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

correlation channel erasure probability p
1+

ε*

dual LP−based lower bounds
SRSD−based upper bounds

Figure 5.7: Lower and upper bounds associated with non-systematic fountain coding under partial infor-
mation

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ=(number of received symbols) / k

ζ=
(n

um
be

r
of

 r
ec

on
st

ru
ct

ed
 s

ym
bo

ls
)

/ k

Ω(x)=Φ∞, λ=2
(x)

Ω(x)=x2

distributions
obtained by LP

Figure 5.8: Intermediate characterisation of degree distributions for partial information case pe = 0.5.

Another way to characterise the overhead penalty is by looking at the intermediate

performance ζ = ζ(ρ) curves analogous to the intermediate analysis of LT codes [66]

in the side information case. Here, ρ = n
k
is the ratio of the received encoded packets

and the block length, whereas ζ is the ratio of the reconstructed data packets (in-

cluding the packets known apriori) and the block length. These curves are presented

in Figure 5.8 for pe = 0.5. Full red line represents the outer bounds on the intermedi-

ate performance of any degree distribution, obtained from the dual program (5.15),

whereas the dashed red line represents the intermediate performance of the limit-

ing shifted soliton distribution Φ∞,λ=2(x). Asterisks are the inner bounds obtained

via series of the linear programming optimisations. They virtually coincide with the

outer bounds and clearly exhibit the superior intermediate performance compared to

the shifted soliton distributions. The obtained degree distributions are listed in Table

5.1.

116

Table 5.1: Optimal degree distributions for various intermediate performance with partial information,
pe = 0.5

(ρ, ζ) optimal degree distribution
(0.3475, 0.7) x3

(0.4108, 0.75) x3

(0.4474, 0.8) x4

(0.4575, 0.85) 0.5852x5 + 0.4148x6

(0.4689, 0.9) 0.4219x5 + 0.5781x6

(0.5001, 0.95) 0.3999x5 + 0.5343x6 + 0.0659x18

(0.5177, 0.99) 0.5006x5 + 0.3853x6 + 0.0463x31

+0.0446x32 + 0.0232x85

(0.5213, 0.999) 0.5057x5 + 0.3728x6 + 0.0959x32 + 0.0019x127

+0.0173x133 + 0.0004x354 + 0.0026x387 + 0.0034x729

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−4

10
−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

Ω
opt

(x), k=104

Ω
opt

(x), k=∞

SRSD, k=104

SRSD, k=∞

DSRSD, k=104

DSRSD, k=∞

Figure 5.9: Comparison of asymptotic and simulated performance of light SRSD, light DSRSD (dmax =
100) and degree distribution obtained by linear program LP2(pe = 0.5, δ = 0.004, dmax = 100,m = 500).

5.4.5 Light degree distributions and Raptor-like scheme

The recurring theme in fountain codes is that the coding schemes with the linear

encoding and decoding complexity employ light degree distributions, capped at some

maximum degree. Our results indicate that light SRSD and DSRSD distributions

perform poorly. In Figure 5.9, we present the asymptotic and �nite length (k = 104)

performance of the degree distribution Ωopt(x) = 0.4816x5 + 0.3916x6 + 0.0792x29 +

0.005130+0.0425x100 optimised by linear program (5.14) contrasted to the light SRSD

with c = 0.03, δ = 0.5 and τ = 50 and the light DSRSD with c = 0.03, δ = 0.5,

τ ∼ Binomial(100, 0.5), both of the same maximum degree dmax = 100. Distribution

Ωopt(x) was chosen as to mimic the error �oor of SRSD and DSRSD but at the mini-

117

13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400
0

20

40

60

80

100

120

140

160

180

the number of received symbols

th
e

nu
m

be
r

of
 s

uc
ce

ss
fu

l d
ec

od
in

gs

Figure 5.10: The histogram of the number of successful recoveries in non-systematic Raptor coding with
partial information.

mized code overhead. Note that although DSRSD is actually based on the assumption

that partial information is an output of a BEC, it actually performs worse than SRSD

in this setting, which is the result of a very small maximum degree dmax = 100 in

comparison to the blocklength.

Our study of the non-systematic fountain codes for coding with partial information

has led to the following conclusions: (a) SRSD and DSRSD su�er signi�cantly larger

penalties on code overhead as k → ∞ than the degree distributions we obtained

by linear programming, (b) light SRSD and DSRSD perform poorly in comparison

to the optimised degree distributions which renders our approach more suitable for

linear complexity Raptor-like schemes.

By concatenating an LT code with a suitably chosen degree distribution to a

very high-rate hybrid LDPC-Half precode from Section 2.8, we have implemented a

non-systematic Raptor solution to the problem of coding with partial information.

The length of the message was set to k = 4 · 104 and the correlation channel erasure

probability was pe = 0.3. Note that the precoding somewhat changes the optimisation

procedure since equation (5.4) now reads

Ω(x) = Φ(s(1− pe) + (1− s+ spe)x), (5.16)

where s is the precode rate. Figure 5.10 depicts the histogram of the numbers of

received packets necessary for the succesful decoding with 500 transmission trials. On

118

average, 13750 packets were required for full recovery, which is about 34.4% of the

blocklength, compared to the optimal 30%, i.e., 12000 packets. This demonstrates

that our code design, albeit sub-optimal, can be utilised in a practical robust low

complexity data multicast transmission scheme with partial information.

5.5 Soft-decision decoding and noisy correlation channels

In this Section, we will consider instances of decoder side information scenario where

the correlation channel can be noisy. Fountain codes on general noisy binary input

memoryless symmetric (BIMS) channels can be decoded by a BP sum-product algo-

rithm (cf. Section 2.5). Every output node f , corresponding to the encoded symbol,

has a corresponding channel log-likelihood ratio (LLR) L(zf), derived based on the

channel output zf . In addition, an input node v may be associated to the side infor-

mation yv, if present and the corresponding virtual channel LLR L(yv). Thus, there

is the intrinsic information associated to both sets of nodes in the decoding graph.

The side information can be embedded directly into the BP sum-product rules as

follows:

m
(i)
v,f =

{
L(yv), i = 0

L(yv) +
∑

g 6=f µ
(i−1)
g,v , i > 0

(5.17)

tanh(
µ

(i)
f,v

2
) = tanh(

L(zf)

2
)
∏
u6=v

tanh(
m

(i)
u,f

2
), (5.18)

where µ(i)
f,v (m(i)

v,f) are the messages passed from the output node f to the input

node v (from the input node v to the output node f) at the i-th iteration. As before,

in Raptor codes, after a �xed number of iterations l, the posterior LLR of the input

node v is given by:

L̂(yv) = L(yv) +
∑
g

µ(l)
g,v. (5.19)

and can be used as a prior value in the additional BP iterations on the decoding graph

of the precode. In [99], a similar design was employed for the joint-source channel

coding scenario using the non-systematic Raptor codes with a standard Soliton-like

output degree distributions. In the rest of this section, we will show how to improve

119

the design of the output degree distributions in this noisy side information setting.

Typically, in the analysis of soft version of BP decoding algorithm, one employs

Gaussian approximation [74] of message-updates. During the BP decoding algorithm,

the messages passed from the variable nodes are obtained as sums of i.i.d. random

variables of �nite mean and variance and behave as the normal random variables on

large scale. However, as argued in [75], the messages passed from the check nodes

(especially those with a small degree) exhibit a rather di�erent behaviour. Hence,

we will assume that the input→output messages M (i)
→ ∼ N (νi, 2νi), i ≥ 0 are the

consistent normal variables and explicitly calculate the mean of the output→input

messages. The key part of the analysis is the function η which describes how the

mean of input→output messages changes in a single iteration of an LT decoder, i.e.,

νi+1 = η(νi), i ≥ 0. By taking expectations in (5.17) and (5.18), we obtain:

η(ν) = EL(Y) + α
dmax∑
d=1

ωdξ(ν, d, Z). (5.20)

where ξ(ν, d, Z) is the mean of the output→input messages passed from an output

node of degree d [68], and is given by:

ξ(ν, d, Z) = 2E

[
atanh

(
tanh

(
Z

2

) d−1∏
j=1

tanh

(
Mj

2

))]
. (5.21)

Here, Z is the random variable describing the LLR of the transmission channel and

Mj ∼ N (ν, 2ν), j ∈ {1, . . . , d − 1}, are i.i.d. random variables. As suggested in

[68], ξ(ν, d, Z) can be approximated by an empirical mean. In the case where the

correlation channel is a BIAWGNC, the above equations can be viewed as a special

case of Theorem 27.

The condition that the BP decoder converges to an all-zero codeword translates

to η(ν) > ν on ν ≥ EL(Y). In the fountain code design for channel coding, the

starting mean of the input→output messages is zero, and thus a corresponding con-

dition becomes too restrictive. This explains poor performance of standard fountain

code degree distributions for coding with noisy side information, as documented in

[92]. However, incorporating the condition η(ν) > ν on ν ∈ [EL(Y), νmax], for some

predetermined cut-o� LLR νmax, into our code design problem produces a robust way

120

to design non-systematic fountain codes for this problem.

5.5.1 Gaussian correlation

Let us assume that the binary information source X over the alphabet {−1, 1} and

the soft side information Y are correlated via Y = X + N , where N ∼ N (0, σ2
V)

is a Gaussian random variable of zero mean and variance σ2
V . This means that CV

is a binary input additive white Gaussian noise channel (BIAWGNC) with noise

variance σ2
V . In this case, H(X|Y) = 1− Cap(BIAWGN(σV)), where capacity of a

BIAWGNC is given in (1.4).

If, in addition, we have that CA is another BIAWGNC with noise variance σ2
A, we

obtain the following set of linear programs:

min
Cap(CA)

1− Cap(CV)

dmax∑
d=1

ωd
d

(5.22)

dmax∑
d=1

ωdξ(νi, d, Z) ≥ νi − 2/σ2
V , i ∈ Nm,

ωd ≥ 0, d ∈ Ndmax ,

where 2/σ2
V = ν1 < ν2 < · · · < νm = νmax arem equidistant points on [2/σ2

V , νmax].

5.5.2 Gaussian transmission with partial information

The optimisation of degree distributions in the case when CV is a BEC of probability p

and CA is a BIAWGNC of noise variance σ2
V follows from similar ideas. It is su�cient

to insert the relationship

ωd =
dmax∑
i=d

(
i

d

)
(1− p)i−dpdφd, (5.23)

into condition (5.20). In this case, the input→output means start at ν = 0 as

we track the means at the portion of data unknown apriori, and this portion of data

contains no soft information: L(Y) = 0. The new design constraints are given by:

dmax∑
i=1

(i∑
d=1

(
i

d

)
(1− p)i−dpdξ(ν, d, Z)

)
φi > ν, ν ∈ [0, νmax], (5.24)

121

and can be easily transformed into an appropriate linear program.

5.5.3 Binary symmetric correlation

For the case of binary symmetric correlation, we can make further simpli�cations by

tracking only the means of the input→output messages from certain classes of the

input nodes. Let us assume that CV = BSC(p), i.e., P(X 6= Y) = p, and that CA is

a BIAWGNC(σ). In this case, H(X|Y) = h(p), where h(p) is the binary entropy of

p. Induced prior distribution is:

P(x| y; p) = pdH(x,y)(1− p)k−dH(x,y). (5.25)

The prior log-likelihood ratio is:

L(y) = (−1)y log
1− p
p

. (5.26)

We will, as usual, assume that x = 0. De�ne: A+ = {i ∈ Nk : yi = 0}, A− =

Nk\A+. We can describe the expectations of messages passed from both classes A+

and A− of variable nodes by:

ηA±(ν) = ± log
1− p
p

+ α
dmax∑
d=1

ωdξ(ν, d, Z), (5.27)

where

ξ(ν, d, Z) = 2E[atanh(tanh(
Z

2
)
d−1∏
i=1

tanh(
Li
2

))], (5.28)

Z ∼ N (2
σ2 ,

4
σ2), and Li are i.i.d. random variables which take values log 1−p

p
+ ν

and − log 1−p
p

+ ν, with probabilities 1 − p and p, respectively. This simpli�cation

allows us to calculate the quantity ξ(ν, d, Z) explicitly as:

ξ(ν, d, Z) =
σ√
2π

d−1∑
i=0

[(
d− 1

i

)
pi(1− p)d−1−i ·

ˆ ∞
−∞

atanh
[
ti−(ν)td−1−i

+ (ν) tanh(u/2)
]

exp(−σ
2(u− 2/σ2)2

8
)du

]
,

122

where t±(ν) = tanh(
± log 1−p

p
+ν

2
). This leads us to the following linear programming

routine:

min
Cap(CA)

h(p)
·
dmax∑
d=1

ωd
d

dmax∑
d=1

ωdξ(νi, d, Z) ≥ νi, i ∈ Nm

ωd ≥ 0, d ∈ Ndmax .

for a suitably chosen set of parameters νi ∈ [0, νmax].

Adapting the above linear programs to Raptor codes with systematic precode of

given rate r is straightforward but leads to tedious calculations. It is su�cient to note

that in (5.28), i.i.d. random variables Li which describe input→output messages at

the previous iteration can take values log 1−p
p

+ν (messages passed from the correctly

received systematic bits) with probability (1 − p)r, − log 1−p
p

+ ν (messages passed

from the incorrectly received systematic bits) with probability pr and ν (messages

received from the parity bits) with probability 1−r. This leads to the new expression

for quantity ξ(ν, d, Z) given by:

ξ(ν, d, Z) =
σ√
2π

∑
i1+i2+i3=d−1

[
(d− 1)!

i1!i2!i3!
(1− p)i1pi2ri1+i2(1− r)i3 ·

ˆ ∞
−∞

atanh
[
ti1+(ν)ti2−(ν)ti30 (ν) tanh(u/2)

]
exp(−σ

2(u− 2/σ2)2

8
)du

]
,

where, in addition to the notation of above, t0(ν) = tanh(ν
2
).

5.5.4 Simulation results

We compared three di�erent methods for coding with Gaussian side information on

the message of length k = 3140: a systematic Raptor code, a standard non-systematic

Raptor code with Ωraptor(x) degree distribution, and the non-systematic Raptor

code with degree distribution Ω(x) = 0.0954x5 + 0.1192x6 + 0.1121x7 + 0.12938x8 +

0.1054x9+0.0807x10+0.1109x11+0.2470x100, obtained from LP in (5.22). The results

are presented in Figure 5.11. The horizontal axis represents the signal-to-noise ratio

123

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

correlation channel SNR [dB]

ac
hi

ev
ed

 o
ve

ra
ll

ra
te

 t/
k

theoretical limit, H(X|Y)/Cap(C
A
)

systematic Raptor
non−systematic Raptor
non−systematic Raptor with optimized Ω

Figure 5.11: The comparison of systematic and non-systematic Raptor codes for coding with noisy side
information.

(SNR) of the correlation channel, which is related to the channel noise variance by

SNR = 10 log10
1
σ2 . The vertical axis represents the average joint source-channel code

rate necessary for the succesful decoding, i.e., t/k, where t is the average number of

received encoded symbols at the decoder. The transmission channel was a BIAWGNC

with SNR = 3 dB. The assumed SNR of the virtual channel during this optimisation

was also set to 3 dB. The systematic Raptor is clearly superior to the non-systematic

schemes in this setting. However, the non-systematic Raptor code with the optimised

Ω(x) is close to the performance of the systematic Raptor code scheme at the higher

region of the correlation channel SNR. This demonstrates that the non-systematic

Raptor codes with the carefully designed degree distributions may nonetheless be an

attractive solution for coding with the noisy uncoded side information, especially for

its signi�cantly lower computational complexity. Note, however, that in the lower re-

gion of virtual SNR our code design constraints become insu�cient to provide the low

code overheads. Namely, the starting means of the input→output messages are lower

than anticipated, and the correlation between the message and the side information

is overestimated.

5.6 Symmetric Distributed Source Coding with Fountain Codes

In this section, another application of the decentralised distributed fountain coding

framework developed in Chapter 3 is presented. Consider a multicast network with

124

the multiple source nodes which utilise simple (uniform) LT codes over their respective

blocks of data packets and transmit an equal amount of the encoded packets. We

maintain our original notation, which means that the overall message block to be

disseminated is x = (x1, x2, . . . , xk), consisting of k data packets xi ∈ Fb2, i ∈ Nk,

which are vectors of length b over F2. However, many of the data packets at multiple

source nodes can be the same, whereas others can be available at a single source

node only. This means that certain data packets are occuring more frequently in an

average encoded packet observed at the receiver, which imposes a di�erent structure

in the overall decoding graph formed at the receiver. Namely, we assume that each

data packet has a unique identi�er, such that the receiver knows the location of each

data packet within each block of data packets which contains it. Thus, the receiver

can perform decoding over the entire set of data packets and ideally, it would need

slightly more than k encoded packets to recover the message. We will consider a

simple example of this setting with two source nodes that have a number of data

packets in common.

Example 41. Assume that two source nodes S1 and S2 are trying to multicast an

overall message block of k packets to a large number of receivers. Each source node

contains exactly t > k/2 packets, but is oblivious of which t packets are available

at other node. Furthermore, each source node multicasts encoded packets produced

with an LT (t,Ω(x)) code ensemble and the receiver obtains an equal number n/2 of

encoded packets from each source node.

To describe the setting of the example in terms of decentralised distributed foun-

tain coding framework, we need to determine division of data packets into classes.

De�ne p = 2t−k
k

(this is the ratio of data packets available at both S1 and S2). Now, we

can de�ne three di�erent classes of data packets: class A1 consists of t−(2t−k) = 1−p
2
k

packets available only at node S1, class A2 consists of 2t − k = pk packets available

at both nodes, and class A3 consists of t− (2t− k) = 1−p
2
k packets available only at

node S2. We denote the class of encoded packets generated at nodes S1 and S2 by

B1 and B2 respectively. DDLT graph describing the generation of encoded packets is

presented in Figure 5.12. Note that the weights on the edges of the graph are propor-

tional to the sizes of the classes of data packets they are incident to, since each source

125

k
p

2

1−
1A

n
2

1

1B

pk

2A

2B

k
p

2

1−
3A

n
2

1

p

p

+
−

1

1

p

p

+
−

1

1p

p

+1

2

p

p

+1

2

Figure 5.12: DDLT graph resulting from the setting in Example 41.

node uses a standard (uniform) LT code over the available data packets. As before,

we set n = k(1 + ε). If we assume the noiseless transmission, the setting outlined

in the following example becomes equivalent to the symmetric erasure correlation

coding introduced in Example 34, with q = 1−p
1+p

, as 1 − q = pk
1−p
2
k+pk

is the ratio of

data packets available at one node which are equal to the corresponding packets at

another node. Thus, the compression rate at each source node can be written as:

RSi
=

1
2
k(1 + ε)

1−p
2
k + pk

=
1 + ε

1 + p
= (1 + ε)

1 + q

2
, i = 1, 2, (5.29)

and ε represents the code overhead with respect to the optimal symmetric rate

pair (RS1 , RS2) = (1+q
2
, 1+q

2
).

Now, we apply the And-Or analysis of Theorem 22 to calculate the asymptotic

packet error rates within each class of the input packets at code overhead ε. In

addition to the starting conditions y1,0 = y2,0 = y3,0 = 1, we obtain the following

recursive equations:

y1,l+1 = exp
[
−1 + ε

1 + p
Ω′(1− 1− p

1 + p
y1,l −

2p

1 + p
y2,l)

]
, (5.30)

y2,l+1 = exp
[
−1 + ε

1 + p
[Ω′(1− 1− p

1 + p
y1,l −

2p

1 + p
y2,l) + (5.31)

Ω′(1− 2p

1 + p
y2,l −

1− p
1 + p

y3,l)]
]
,

y3,l+1 = exp
[
−1 + ε

1 + p
Ω′(1− 2p

1 + p
y2,l −

1− p
1 + p

y3,l)
]
. (5.32)

126

It can be easily checked that y3,l = y1,l and that y2,l = y2
1,l = y2

3,l, ∀l ≥ 0. Thus,

one can trace the asymptotic behaviour of the three packet error rates with a single

parameter, which allows a simple transformation of the above recursive equations into

the linear programming optimisation, analogous to that of the standard LT codes.

The linear programs which can be used to obtain the asymptotically optimal degree

distributions in this scenario are of the following form:

LPsym : min
dmax∑
d=1

ωd
d

(5.33)

1

1 + p
ω(1− 1− p

1 + p
zi −

2p

1 + p
z2
i) ≥ − ln(zi), i ∈ Nm,

ωd ≥ 0, d ∈ Ndmax

where 1 = z1 > z2 > · · · > zm = δ are m equidistant points on [δ, 1]. The solution

of this linear program is an edge-perspective degree distribution with the maximum

degree dmax which reaches the packet error rate of δ within classes A1 and A3 (and

δ2 within class A2) at the minimum overhead.

Now, let us for the sake of simplicity assume p = 1/3, i.e., that a third of the

packets are available at both source nodes. The linear program (5.33) simpli�es to:

LP : min
dmax∑
d=1

ωd
d

(5.34)

3

4
ω(1− zi

2
− z2

i

2
) ≥ − ln(zi), i ∈ Nm,

ωd ≥ 0, d ∈ Ndmax .

The degree distribution we obtained using this linear program with δ = 0.01 and

dmax = 100 is given by:

Ω(x) = 0.0020x+ 0.4305x2 + 0.2205x3 + 0.0793x5 +

0.1097x6 + 0.0508x12 + 0.0409x13 + 0.0343x30 +

0.0106x32 + 0.0215x100. (5.35)

127

−0.1 −0.05 0 0.05 0.1 0.15 0.2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

y
1
, y

3
(k=∞, Ω*)

y
2
 (k=∞, Ω*)

y
1
, y

3
 (k=6×104, Ω*)

y
2
 (k=6×104, Ω*)

y
1
, y

3
 (k=1.5×105, Ω*)

y
2
 (k=1.5×105, Ω*)

y
1
, y

3
 (k=6×104, Ω

raptor
)

y
2
 (k=6×104, Ω

raptor
)

Figure 5.13: Packet error rates of symmetric DSC with LT codes from Example 41, p = 1/3.

Simulation results for the large blocklengths, k = 6 · 104 and k = 1.5 · 105 are

consistent with our asymptotic analysis, as demonstrated in Figure 5.13. For com-

parison, we included results for a typical Soliton-like degree distribution Ωraptor(x),

which is clearly penalised by signi�cantly higher error �oors in this setting.

The symmetric DSC problem is particularly the case for which the non-systematic

LT code design with its simplicity and lower computational complexity has an ad-

vantage over the systematic Raptor design, as it is not clear how this scenario can

make use of the systematic Raptor design.

We can now study the dual of linear program obtained in (5.34) to determine outer

bounds on the intermediate performance of any limiting degree distribution Ω(x) as

applied to the scenario of symmetric distributed source coding with fountain codes

outlined in Example 41. The dual program is given by:

max
PZ(z)

E[− lnZ] (5.36)

3

4
E[(1− Z

2
− Z2

2
)d−1] ≤ 1

d
, d ∈ Nd̄(δ),

Z ∈ [δ, 1],

where d̄(δ) =
⌈

2
δ+δ2

⌉
+1, according to Theorem 16 in Chapter 2. We have obtained

feasible solutions of the dual program (5.36) by looking for discrete distributions PZ(z)

restricted to the uniform grid of granularity 0.001. The obtained outer bounds are

128

plotted in Figure 5.14 with the full red line. Similarly as for the standard LT codes

[66], we �nd that the limiting distributions Ω(x) = x and Ω(x) = x2 coincide with the

outer bound for relatively small values of ζ (and are thus the optimal limiting degree

distributions for their respective intervals of small ζ). It can be easily calculated

that Ω(x) = x is optimal on ζ ∈ (0,
√

5−1
2

], whereas Ω(x) = x2 is optimal on ζ =

(
√

5−1
2
,
√

33−3
6

]. It is interesting to note that the limiting soliton distribution Ψ∞(x)

is not the optimal choice as ζ → 1, but rather exhibits a rather large overhead

gap, and its asymptotic intermediate performance is plotted with the dashed red

line. In addition, performance of the degree distributions obtained by series of linear

programming optimisations as in (5.34) for various values of ζ are plotted by the

asterisks in Figure 5.14. We can see that the optimised degree distributions virtually

coincide with the outer bounds. The obtained degree distributions are listed in Table

5.2.

Let us quantify the overhead gap arising from the limiting soliton distribution as

applied to the symmetric DSC problem from Example 41. We are looking for such

threshold value ε∗ such that:

(1 + ε)
1

1 + p
Ψ′∞(1− 1− p

1 + p
z − 2p

1 + p
z2) + log(z) > 0, (5.37)

∀z ∈ (0, 1] and ∀ε > ε∗. As Ψ′∞(x) = − log(1− x), (5.37) simpli�es to:

z

(1−p
1+p

z + 2p
1+p

z2)
1+ε
1+p

> 1, ∀z ∈ (0, 1], (5.38)

whereby as we let z → 0, we obtain ε∗ = p. Namely, for ε < p, the left hand

side in (5.38) converges to zero, and, hence, (5.37) cannot be satis�ed ∀z ∈ (0, 1].

Conversely, it can be directly checked that (5.38) is valid whenever ε > p. Thus,

we conclude that the overhead penalty arising when the limiting soliton distribution

is applied to the symmetric DSC problem is particularly the proportion of packets

which are available at both nodes. This e�ectively means that the limiting soliton

distribution cannot take any advantage of the fact that the sets of packets available

at two source nodes overlap. Rather, it performs exactly the same as if the two sets

of packets were disjoint. For large values of p, this can lead to a rather ine�cient

129

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = (number of received symbols) / k

ζ
=

 (
nu

m
be

r
of

 r
ec

on
st

ru
ct

ed
 s

ym
bo

ls
)

/ k
Ω(x)=x

Ω(x)=Ψ∞(x)

distributions
obtained

by LP

Ω(x)=x2

Figure 5.14: Intermediate performance of symmetric DSC with LT codes from Example 41, p = 1/3.

Table 5.2: Asymptotically good degree distributions for various intermediate performances

(ρ, ζ) optimal degree distribution
(0.8154, 0.6) 0.0142x+ 0.4249x2 + 0.5609x3

(0.8461, 0.65) 0.0419x+ 0.2886x2 + 0.6695x3

(0.8766, 0.7) 0.0032x+ 0.5283x2 + 0.4685x4

(0.9031, 0.75) 0.5487x2 + 0.1732x4 + 0.2781x5

(0.9271, 0.8) 0.0002x+ 0.4737x2 + 0.2337x3 + 0.1503x6 + 0.1420x7

(0.9485, 0.85) 0.0005x+ 0.4665x2 + 0.1644x3 + 0.1589x4 + 0.2097x9

(0.9677, 0.9) 0.0001x+ 0.4566x2 + 0.1963x3 + 0.1636x5

+0.0454x6 + 0.1380x14

(0.9849, 0.95) 0.0001x1 + 0.4495x2 + 0.1828x3 + 0.0288x4 + 0.1550x5

+0.0921x10 + 0.0247x11 + 0.0671x29

(0.9971, 0.99) 0.4458x2 + 0.1646x3 + 0.0888x4 + 0.0617x5 + 0.0051x6

+0.0824x7 + 0.0463x11 + 0.0301x14 + 0.0287x23 + 0.0111x27

+0.0128x49 + 0.0102x57 + 0.0124x152

(0.9997, 0.999) 0.4445x2 + 0.1652x3 + 0.0839x4 + 0.0661x5 + 0.0309x6

+0.0758x8 + 0.0509x13 + 0.0144x18 + 0.0269x25 + 0.0125x40

+0.0049x50 + 0.0071x64 + 0.0072x102 + 0.0026x161 + 0.0017x215

+0.0020x282 + 0.0021x548 + 0.0012x1565

coding scheme.

As the limiting soliton distribution Ψ∞(x) is not the Slepian-Wolf limit approach-

ing distribution in our setting, a natural question arises: do Slepian-Wolf limit ap-

proaching degree distributions exist? The results in Figure 5.14 obtained by series

of linear programming optimisations suggest that they do, as the obtained values of

ρ stay below 1 even for ζ as large as ζ = 0.999. More importantly, we would like

to know how to explicitly calculate such distributions. For simplicity, let us �rst

consider the case p = 1/3. If Ω(x) approaches the Slepian-Wolf limit, it satis�es:

130

(1 + ε)
3

4
Ω′(1− z

2
− z2

2
) + ln(z) > 0, (5.39)

∀z ∈ (0, 1] and ∀ε > 0. To obtain such a degree distribution, make the change of

the variables by setting x = 1− z
2
− z2

2
, whereby, as z > 0, we have

z =

√
9− 8x− 1

2
. (5.40)

Now set:

Ω(x) = −4

3

ˆ x

0

ln

√
9− 8t− 1

2
dt, x ∈ [0, 1). (5.41)

It can be directly checked that limx→1 Ω(x) = 1 and that the MacLaurin expansion

of Ω(x) is valid for x ∈ [0, 1) and represents the generating polynomial of a probability

mass function on N. Moreover, it satis�es (5.39). The �rst few terms of the MacLaurin

expansion are:

Ω(x) =
4

9
x2 +

40

243
x3 +

64

729
x4 +

1808

32805
x5 +O(x6) (5.42)

≈ 0.4444x2 + 0.1646x3 + 0.0878x4 + 0.0551x5 +O(x6).

By comparing the degree distributions in Table 5.2 obtained by series of the linear

programming optimisations to (5.42), we conclude that the degree distribution de�ned

by (5.41) is the symmetric DSC equivalent of the limiting soliton Ψ∞(x). Indeed, if

the degree distributions of a sequence of LT code ensembles converge pointwise to

(5.41), then this sequence approaches the Slepian-Wolf limit for Example 41. This is

because: (i) MacLaurin expansion in (5.42) represents a probability distribution, and

(ii) Ω(x) is de�ned in such a way to collapse condition (5.39) to −ε log(z) > 0, which

is true ∀z ∈ (0, 1] and ∀ε > 0. In addition, if ε ≤ 0, decoded fraction is zero, which

means that (5.43) exhibits the same discontinuity at ε = 0 as the limiting soliton in

the standard channel coding case. In much the same way, the optimal limiting degree

distributions can be determined for any value of p ∈ (0, 1) as

131

Ω(x) = −2(1 + p)

1 + 3p

ˆ x

0

ln

√
t(p2 − 1) + 1− p

1− p
dt, x ∈ [0, 1), (5.43)

where 2
1+3p

is the normalizing factor. Namely, it can be directly calculated that:

lim
x→1

(1 + p)

ˆ x

0

ln

√
t(p2 − 1) + 1− p

1− p
dt =

−1− 3p

2
.

The �rst few terms of the MacLaurin expansions of (5.43) which determine the

limiting degree distributions for various values of p are listed in Table 5.3. Appar-

ently, the existence of common data packets between two source nodes induces small

yet signi�cant perturbations in the Slepian-Wolf limit approaching degree distribu-

tion. Yet, whatever the ratio of the common data packets, the encoders can adapt

the degree distribution in such a way as to provide the optimal performance of the

encoding scheme. In the two extreme cases, i.e., for p = 0 (two sets of packets are

disjoint) and for p = 1 (source nodes contain exactly the same data), the optimal

degree distribution is the limiting Soliton distribution. This is in accordance with

the common knowledge in fountain coding, i.e., for the independent sources, encoders

should perform two independent standard fountain codes, whereas when two termi-

nals encode the same data, they can use the same fountain code, but typically with

a di�erent pseudorandom number generator seed, as to provide the independence of

the encoded packets in a standard fountain encoded stream. Our results show that

when two terminals contain correlated but not identical data, fountain coding can

still achieve information theoretic limits by appropriately modifying the code design.

132

Table 5.3: The optimal limiting degree distributions for various values of p

p Ω(x)

0
∑
d≥2

xd

d(d−1) (limiting soliton)
0.1 0.4654x2 + 0.1621x3 + 0.0836x4 + 0.0515x5 +O(x6)
0.2 0.4500x2 + 0.1620x3 + 0.0853x4 + 0.0533x5 +O(x6)
0.3 0.4447x2 + 0.1638x3 + 0.0872x4 + 0.0547x5 +O(x6)
0.4 0.4454x2 + 0.1663x3 + 0.0887x4 + 0.0556x5 +O(x6)
0.5 0.4500x2 + 0.1687x3 + 0.0896x4 + 0.0558x5 +O(x6)
0.6 0.4571x2 + 0.1707x3 + 0.0897x4 + 0.0552x5 +O(x6)
0.7 0.4661x2 + 0.1717x3 + 0.0890x4 + 0.0541x5 +O(x6)
0.8 0.4765x2 + 0.1715x3 + 0.0875x4 + 0.0528x5 +O(x6)
0.9 0.4878x2 + 0.1699x3 + 0.0855x4 + 0.0513x5 +O(x6)
1

∑
d≥2

xd

d(d−1) (limiting soliton)

133

Chapter 6

Fountain codes in relay networks

6.1 Introduction

The exploration of fountain codes for symmetric distributed source coding in the pre-

vious Chapter has characterised their asymptotic performance in a particular multi-

terminal multicast setting, i.e., when two source nodes multicast the data to a large

number of receivers. The results indicate that when two source nodes multicast the

correlated data in the erasure correlation SWC problem (see Example 41 in Section

5.6), there exists a sequence of LT code ensembles which approaches the symmet-

ric point of the lower boundary to the admissible compression rate region. If these

two source nodes contain independent data, transmission problem is asymptotically

equivalent to the single-source multicast with fountain codes, and the asymptotically

optimal fountain code ensembles employ degree distributions that converge pointwise

to the limiting soliton distribution at both nodes. Thus, it is su�cient to employ

the separate, independent fountain encoders, whereupon the decoder independently

reconstructs the message from the separate encoded bitstreams. Nonetheless, in this

Chapter, we consider exactly this scenario, where, in addition, multiple source nodes

can communicate to a common relay node, as illustrated in Figure 6.1. In relay

networks, the relay nodes are nodes explicitly built for the purpose of relaying and

forwarding data, and they typically do not have their own data to transmit. The re-

sults in this Chapter indicate that, in a practical setting, presence of relay nodes can

lead to the signi�cant gains in communication e�ciency of a multiterminal multicast

transmission. Namely, it is often bene�cial to combine the independent encoded bit-

134

Figure 6.1: Common relay combines the encoded bitstreams of two independent source nodes and multi-
casts over lossy links

streams from the multiple source nodes at the common relay node in order to harness

the smaller communication overheads that come with the larger blocklengths.

Although the motivation for this chapter is of practical nature, the ideas lead

us to the introduction of a novel set of fountain coding techniques which admit the

asymptotic analysis and code design optimisation, similar to that in the previous

Chapters. These fountain coding schemes involve an active participation of the relay

nodes, which can receive, combine and forward the incoming encoded packets from

the multiple source nodes. In fact, in our study, the relay nodes are equipped with

the similar fountain coding apparatus as the source nodes, and they perform the same

basic operations as the fountain encoder. The relay re-encodes the multiple incoming

encoded bitstreams into one. The main insight which motivates the discussion of

fountain codes in relay networks is the following: by combining the independent data

from the multiple source nodes, one generates a decoding problem of larger size,

and potentially of a smaller communication overhead, as the gap to the performance

predicted by the asymptotic analysis is reduced. The main problem we tackle remains

very similar as in the previous Chapters, as we seek to describe how one should

perform (small) decentralised encoding tasks at the source nodes (and the relay)

such that the large decoding problem, formed following the re-encoding by the relay,

is well behaved.

135

6.2 Distributed LT codes

The independent rateless erasure encoders for multicast of data distributed across the

multiple source nodes which communicate to a common relay were �rst considered in

[13, 14]. The authors introduce a class of fountain codes called Distributed LT (DLT)

codes by decomposing standard LT codes, and develop the code design for the cases

of two and four source nodes communicating to a relay with restricted processing

capabilities. The developed code design aims to result in a decoding behaviour at the

receiver which resembles the standard LT decoding behaviour. The deconvolution

of the robust soliton distribution was used to construct DLT codes, and substantial

performance bene�ts have been noted in comparison to a strategy where each source

uses an independent LT encoder and the relay simply receives and forwards the

encoded packets. In [15], we describe and study a more general version of distributed

LT codes, applicable to any number of sources, where relay is allowed to selectively

combine incoming packets independently of their degrees in a randomised fashion,

naturally extending DLT coding scenario of [14]. Asymptotic analysis is derived for

such selective distributed LT (SDLT) codes, and it allows the construction of the code

optimisation tools for any number of source nodes. We also prove the asymptotic

equivalence of distributed LT codes and certain LT codes, thereby answering the

question posed in [14] of whether distributed LT code design problem should target

the same code parameters as the original LT code design problem.

In a general scenario, one may consider a network with t source nodes, such that

each source node contains a set of k data packets. Unlike the previous Chapters, we

assume that these sets of packets are disjoint, i.e., we are interested in the channel

coding gains only. Let us �rst assume that each source i ∈ Nt encodes its k packets

using an LT(k,Φi(x)) code ensemble, and that the relay simply bitwise XOR's all the

incoming packets. We will refer to this coding scheme as DLT(t, k, {Φi(x)}ti=1) and

simply as DLT(t, k,Φ(x)) for Φi(x) = Φ(x), i ∈ Nt. The receiver that has successfully

obtained n = tk(1 + ε) encoded packets from the relay is solving a decoding problem

with a generator matrix G = [G1 G2 · · · Gt] formed as the horizontal concatenation

of the generator matrices Gi, i ∈ Nt corresponding to the encoding operation at

the i-th source node. It seeks to reconstruct tk data packets from n = tk(1 + ε)

136

encoded packets. The decoding graph GG has tk input nodes and n output nodes,

and can be thought of as the union of the factor graphs GGi
, assuming they share

the same output nodes. The resulting output degree distribution in the graph GG

is Ω(x) =
∏t

i=1 Φi(x) but it is not immediately clear if the decoding operation on

graph GG is equivalent to the decoding operation of an LT(tk,Ω(x) =
∏t

i=1 Φi(x))

code ensemble whose decoding graph has the same size and the same output degree

distribution. Namely, as discussed in Section 2.2, the random variable V on Ft·k2

induced by LT(tk,Ω(x) =
∏t

i=1 Φi(x)) is distributed as P(V = v) = Ωw(v)/
(
t·k
w(v)

)
,

v ∈ Ft·k2 . This means that, for the �xed choice of w(v) = d, distribution becomes

uniform on the set Ft·k2 (d) = {v ∈ Ft·k2 : w(v) = d}.

On the other hand, DLT(t, k, {Φi(x)}ti=1) results in a di�erent distribution on Ft·k2 ,

given by:

P(V = v) =
t∏
i=1

Φi,w(v|Nik\N(i−1)k
)(

k
w(v|Nik\N(i−1)k

)

) , (6.1)

where v|Nik\N(i−1)k
∈ Fk2 corresponds to the values of v within the i-th group

of k coordinates. This distribution is obviously not uniform for the �xed choice

of w(v) = d. Even so, we claim that, as k → ∞, two decoding problems when

Φi(x) = Φ(x), i ∈ Nt are equivalent. If not all output degree distributions are equal,

this is generally not true, as di�erent output degree distributions may induce di�erent

average input degrees in data from di�erent source nodes which leads to the unequal

error protection (UEP) property (see Chapter 4 for the treatise of fountain codes for

unequal error protection) across di�erent classes of data packets.

6.2.1 And-Or Lemma for DLT ensembles

Let us now formulate a version of the And-Or lemma for DLT code ensembles. Al-

though of little practical signi�cance, this result serves as a guide to the asymptotic

analysis of a more general (and useful) scenario where relay is able to perform more

complicated combining operations.

Lemma 42. The packet error rate within the i-th class of packets of a DLT(t, k, {Φi(x)}ti=1)

137

ensemble converges to yi,∞ = liml→∞ yi,l, as k →∞, where yi,l is given by:

yi,0 = 1 (6.2)

yi,l = exp

(
−αiφi(1− yi,l−1)

∏
j 6=i

Φj(1− yj,l−1)

)
.

In particular, for Φi(x) = Φ(x), i ∈ Nt, all the input average degrees are equal, i.e.,

αi = α, i ∈ Nt, and the packet error rate converges to y∞ = liml→∞ yl, where:

y0 = 1 (6.3)

yl = exp
(
−αφ(1− yl−1)(Φ(1− yl−1))t−1

)
.

Proof. The input node degree distribution Λi(x) corresponding to the packets from

the i-th source node is, by construction, Binomial(1
k
, αik), and converges pointwise

to Poisson(αi) as k → ∞. Pick a random source node i and a random input node

a corresponding to a packet from that source node. At the zeroth iteration, no

information is available about this node and thus the probability that a is erased is

yi,0 = 1. Now consider the l-th iteration. Node a stays erased if and only if it receives

the erasure-message from each of its neighbours, and it has d of them with probability

Λi,d. Consider a random output node f ∈ N(a), i.e., a random edge incident to a

in GGi
. Node f has degree di in the graph GGi

with probability φi,di
. However, in

GGj
, f is a randomly selected output node and has degree dj with probability Φj,dj

for j 6= i. Now, �x the degrees of node f within each of these graphs to some values

d1, d2, . . . , dt. Then, the probability that f sends an erasure to the input node a at

the l-th iteration is given by:

1− (1− yi,l−1)di−1
∏
j 6=i

(1− yj,l−1)dj , (6.4)

since f needs to receive an erasure message from any of its di − 1 neighbours in

source i or from any of its dj neighbours in other source nodes. Averaging over

the exponents for each of the source nodes and applying the Poisson approximation

Λi(x) = exp(−αi(x− 1)) gives the lemma.

Above lemma asserts the equivalence of the peeling decoder performance when ap-

138

plied to DLT(t, k,Φ(x)) and LT(tk,Φ(x)t) ensembles and this can be directly checked

as well. However, we prove a more general result in the next Section.

6.3 Selective combining at the relay

The obvious problem that arises in the scenario considered above is that the peeling

decoder requires an output node of degree one in the decoding graph to begin de-

coding. When t ≥ 2, if no distribution Φi(x), i = 1, . . . , t allows encoded packets of

degree zero, no degree-one packets will be transmitted from the relay and allowing

degree zero packets is clearly wasteful of resources. The way around this problem is

to allow the relay node to selectively combine the incoming packets. In [14], selective

combining was demonstrated for two and four sources and it was observed that these

naturally extend to 2m sources for any m ∈ N. However, this selective combining

tests the degrees of the incoming packets �rst, with a simple rationale (when an in-

coming packet is of degree one, it is forwarded without combining it with an incoming

packet from another source node). We will extend this approach for any number of

source nodes t, and the fundamental di�erence of our approach is that, as opposed

to [14], the selective combining can be performed independently of the degrees of

the incoming packets at the relay. In a way, we allow the relay to re-encode the

incoming encoded bitstreams in a randomised fashion, by operating very similarly to

the LT encoder. For each set of the incoming packets at a single time slot, the relay

samples a value from the set Nt = {1, . . . , t} according to a probability distribution

(Γ1,Γ2, . . . ,Γt), where Γi is the probability that the value i was chosen. As usual,

let us compactly denote this probability distribution in its generating polynomial

notation by Γ(x) =
∑t

d=1 Γdx
d. After choosing the �degree� d, the relay node selects

d distinct incoming packets uniformly at random, bitwise XORs them and forwards

the result. The operating of the relay is illustrated in Figure 6.2 for the case of t = 5

source nodes.

The described coding scenario results in a particular code ensemble from the re-

ceiver's point of view: SDLT(t, k,Γ(x), {Φi(x)}ti=1) and SDLT(t, k,Γ(x),Φ(x)) when

Φi(x) = Φ(x), i ∈ Nt. The selective combining operation at the relay induces an-

other bipartite graph H associated with the SDLT ensemble, which captures the

139

Figure 6.2: Relay re-encodes the incoming encoded packets with an LT code

encoding operation at the relay. Graph H has n �output� nodes (corresponding to

the re-encoded packets transmitted from the relay and observed at the receivers) and

t �input� nodes (corresponding to the source nodes in a network which communicate

to the relay). An edge between an �output� node f and an �input� node i signi�es that

the re-encoded packet associated to f is a linear combination of an encoded packet

received from the source node i, amongst others. Graph H has the �output� node

degree distribution Γ(x) and the edge-perspective �output� node degree distribution

γ(x) = Γ′(x)
Γ′(1)

.

Selective combining also raises the issue of the wastage of resources, as some

encoded packets that relay receives are never forwarded to the receivers. Namely,

any kind of a centralised coordination which would guarantee that only ti ∈ Nt,

i = 1, 2, . . . , n sources transmit at each time slot, where ti are independent realisations

of the random variable T on Nt with distribution Γ(x), would preclude the need

for distributed LT codes, as it could as well be used to contruct an exact Soliton

distributed LT code across the data for all the source nodes. Nonetheless, we believe

our setting to be justi�ed as it is consistent with the digital fountain paradigm, which

penalises the reception rather than the transmission of data (cf. Section 2.1 for the

discussion of the digital fountain paradigm and [56] for the information theoretic

perspectives of fountain codes). The following example illustrates a decentralised and

asynchronous data dissemination scenario taking advantage of the selective combining

at the relays. Modus operandi of fountain codes continually creates encoded packets

just as useful as any others, which can be discarded and exchanged, and this property

characteristically comes to the rescue when we talk about the broadcast transmission

to a large number of participants in communication. The case of fountain coding in

relay networks is not di�erent.

140

Example 43. Consider a scenario resulting in the SDLT(t, k,Γ(x),Φ(x)) ensemble,

where t source nodes are continually multicasting data to a large number r of relays

via lossy links. As all the incoming packets are equally important descriptions of its

source, a relay can tune into a desired number of ongoing broadcasts at any time,

and can combine incoming packets from the di�erent time slots, when a packet loss

has occurred. The chance that a source node produces an encoded packet which is

not forwarded from any relays becomes negligible when r � t.

6.3.1 Coding at the source nodes vs. coding at the relay node

Selective combining of data at the relay leads to the consideration of the two extreme

cases of such a setting, which assume that encoding of the data happens either at the

source nodes or at the relay node, but not at both. These cases are outlined in the

following example.

Example 44. Let t source nodes contain an independent data set of k packets.

Assume that the relay is able to receive packets from di�erent source nodes at a

single time slot, and broadcasts a single packet per time slot. Consider the two

following scenarios:

• Coding at the source nodes - SDLT(t, k, x,Φ(x)): At each time slot, randomly

selected source node creates one encoded packet using LT(k,Φ(x)) and transmits

it to the receiver, whereas relay simply forwards the received encoded packet,

i.e., Γ(x) = x.

• Coding at the relay node - SDLT(t, k,Γ(x), x): Each source node transmits a

single, randomly chosen data packet, i.e., Φ(x) = x, and relay encodes the

incoming sequence of t packets with an LT(t,Γ(x)) to generate and broadcast

an encoded packet.

Not surprisingly, for relatively small values of k and t, e.g., k = 1000 and t = 10, we

discovered that coding at the relay can exhibit signi�cant gains compared to coding

at the source nodes, even though the set of degree distributions Γ(x) at our disposal

is restricted to those of a very low maximum degree, i.e., dmax ≤ t. Namely, in coding

at the relay node, the decoding algorithm is performed on blocklength t · k, instead

141

of t separate decodings on blocklength k. Since k is relatively small, the tenfold

increase in blocklength results in the large di�erence in performance. In simulation

results shown in Figure 6.3a, we compared the two optimised code ensembles (with

a suitable criterion) for coding at the source nodes (black asterisks) and for coding

at the relay (blue circles) for these values of k and t (details of optimisation will be

described in the next Section) and the large di�erence in performance is evident. This

example also motivates us to study the case where both distributions Φ(x) 6= x and

Γ(x) 6= x are non-trivial, which is the general case of encoding at the source nodes

and re-encoding at the relay node, resulting in a particular SDLT(t, k,Γ(x),Φ(x))

code ensemble. Namely, when t is also small, available degree distributions Γ(x) have

a very low allowed maximum degree and thus su�er from rather high error �oors.

Allowing encoding at both the source nodes and the relay node helps alleviate the

error �oor and bene�t from the combining of data from di�erent source nodes in order

to produce a decoding problem of larger size and a smaller communication overhead.

In other words, if we encode both at the sources and at the relay we bene�t from

both (a) lower error �oors, and (b) performance closer to the asymptotic predictions.

6.3.2 And-Or Lemma for SDLT ensembles

We capture the asymptotic decoding performance of SDLT ensembles by the And-Or

formulae given in the following Lemma:

Lemma 45. The packet error rate of an SDLT(t, k,Γ(x),Φ(x)) ensemble converges

to y∞ = liml→∞ yl as k →∞, where yl is given by:

y0 = 1 (6.5)

yl = exp (−ᾱφ(1− yl−1)γ (Φ(1− yl−1))) ,

where ᾱ = Γ′(1)Φ′(1)(1 + ε) is the average input degree on the overall decoding graph.

Proof. The proof follows closely from Lemma 42. Denote the overall decoding graph

by G. In G, selecting a neighbour f to a random input node a corresponding to

a packet from a random source node i is equivalent to selecting a neighbour to a

node i on graph H. This node has degree s in H with probability γs, and averaging

142

6.3 over γ(x) gives (6.5), as long as we can prove that the input degrees on the

decoding graph are Poisson distributed with mean ᾱ. Now, in each graph GGi
, the

degree Di of an input node is an independent random variable identically distributed

as D ∼ Poisson(α), where α = Φ′(1)t(1 + ε). Selective combining of the incoming

packets at the relay can be viewed as the thinning [124] of Di in each GGi
, since each

edge connected to an input node is going to be transferred to the overall decoding

graph G with probability β
n
, where β = Γ′(1)k(1 + ε) is the average �input� node

degree in H. Thus, in G, degree of an input node is:

D̄ ∼
D∑
i=1

Xi, (6.6)

where X1, X2, . . . , XD are i.i.d. Bernoulli(β
n
) variables. The thinning of random

variables conserves the Poisson law and thus, D̄ ∼ Poisson(ᾱ), where ᾱ = αβ
n

=

Γ′(1)Φ′(1)(1 + ε), which proves the claim.

We note that this lemma allows a simple linear programming optimisation of the

distribution Γ(x) in the case where Φ(x) is known apriori, and these linear programs

are discussed in the next Section.

Let us now consider the code ensemble LT(tk,Γ(Φ(x))) over the entire set of tk

packets. Its edge-perspective output degree distribution is

ω(x) =
Γ′(Φ(x))Φ′(x)

Γ′(1)Φ′(1)
(6.7)

= φ(x)γ(Φ(x)).

Its average input degree is ᾱ = Γ′(1)Φ′(1)(1 +ε) and thus its asymptotic packet error

rate y∞ is determined by:

y0 = 1 (6.8)

yl = exp (−ᾱφ(1− yl−1)γ (Φ(1− yl−1))) ,

which is exactly the same as (6.5). Thus, we have proven the following corrolary.

Corollary 46. The packet error rate of a selective distributed LT code ensemble

SDLT(t, k,Γ(x),Φ(x)) converges to the same value as that of an LT code ensemble

143

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
10

-3

10
-2

10
-1

10
0

reception overhad ε

pa
ck

et
 e

rr
or

 r
at

e

SDLT(10, 103, Γ

a
(x), x)

SDLT(10, 103, Γ
b
(x), Φ

b
(x))

SDLT(10, 103, x, Φ
c
(x))

SDLT(10, ∞, Γ
a
(x), x)

SDLT(10, ∞, Γ
b
(x), Φ

b
(x))

(a)

0 0.05 0.1 0.15 0.2
10

-3

10
-2

10
-1

10
0

reception overhad ε

pa
ck

et
 e

rr
or

 r
at

e

SDLT(10, 104, Γ
a
(x), x)

SDLT(10, 104, Γ
b
(x), Φ

b
(x))

SDLT(10, 104, x, Φ
c
(x))

SDLT(10, ∞, Γ
a
(x), x)

SDLT(10, ∞, Γ
b
(x), Φ

b
(x))

SDLT(10, ∞, x, Φ
c
(x))

(b)

Figure 6.3: Simulated and asymptotic packet error rates for SDLT ensembles with (a) t = 10, k = 103 and
(b) t = 10, k = 104.

LT(tk,Γ(Φ(x))), as k →∞.

This theorem answers one of the questions posed in the discussion of [14] of whether

the distributed LT code design should target the soliton-like output degree distribu-

tions in the resulting bitstream transmitted from the relay node. The answer is, at

least in the asymptotic regime, yes.

144

6.4 Optimisation of SDLT degree distributions

In an SDLT scenario, the degree distribution Γ(x) at the relay can be optimised

by the linear programming when distribution Φ(x) at the sources is �xed, based

on the And-Or analysis of Lemma 45. Similarly to the standard techniques on the

degree distribution optimisation (cf., e.g, Section 2.4), we obtain the following linear

program:

min
1

Φ′(1)

dmax∑
d=1

γd
d

(6.9)

dmax∑
d=1

γdφ(1− xi)Φ(1− xi)d−1 ≥ − ln(xi), i ∈ Nm,

where δ = x1 < x2 < · · · < xm = 1 are m equidistant points on [δ, 1], δ is

the desired packet error rate, and dmax is the maximum degree of Γ(x). In contrast

to the linear programs we had before, we are restricted in the choices for dmax as

dmax ≤ t, i.e., the maximum degree cannot exceed the number of source nodes. We

used the above linear program to obtain the degree distribution pairs (Γ(x),Φ(x))

for the SDLT coding scenario with t = 10 sources. We �xed the value of the desired

packet error rate to δ = 0.02 and the three examples of the distributions optimised

by (6.9) are given in Table 6.1. For trivial case Φa(x) = x, i.e., coding only at the

relay, not surprisingly, obtained distribution Γa(x) resembles a soliton-like LT code

distribution, as in that case (6.9) collapses to a standard LT linear program (2.18).

The optimal value of the objective function was 1 + ε∗ = 1.0287. On the other

hand, by trial-and-error we obtained distributions Φ(x) for non-trivial SDLT case

and then optimised the distribution Γ(x) based on such choice of Φ(x), searching

for the pair of distributions superior to coding only at the relay. We were able to

obtain a pair of distributions (Γb(x),Φb(x)) with 1+ε∗ = 0.9983, which is a signi�cant

improvement. Alternatively, one can utilise coding only at the sources, i.e., Γc(x) = x,

which also leads to the reduction of (6.9) to a standard LT linear program (2.18).

The obtained value of the objective function is even smaller. Nonetheless, for the

already discussed reasons, a very sensitive performance of this coding scheme can be

expected when k is relatively small. These three pairs of degree distributions are

given in the Table 6.1. It is interesting to note that in the case of coding at both

145

the source nodes and the relay node, Φb(x) looks more like a standard Soliton-like

LT code distribution, while Γb(x) has the largest portion of its mass on degree 1.

Although both distributions in (Γb(x),Φb(x)) are very simple and have a very small

maximum degree, their combination produces a powerful SDLT code ensemble. This

is demonstrated by numerical simulations for blocklengths k = 103 and k = 104

presented in Figs. 6.3a and 6.3b. At both blocklengths, coding at both the source

nodes and the relay node outperforms the two competing schemes in terms of the

value of the code overhead ε at which the decoding avalanche occurs. At k = 104,

coding only at the source nodes begins to close the gap compared to the asymptotic

packet error rate curve - however, it is still outperformed by the pair (Γb(x),Φb(x)).

Table 6.1: Pairs of degree distributions for SDLT ensembles

Degree distributions δ 1 + ε∗

Φa(x) = x .02 1.0287
Γa(x) = 0.0062x+ 0.4357x2 + 0.3135x3 + 0.2446x10

Φb(x) = 0.05x+ 0.5x2 + 0.4x3 + 0.05x4 .02 0.9983
Γb(x) = 0.7735x+ 0.0063x2 + 0.1405x3 + 0.0087x4

+0.0711x10

Φc(x) = 0.0080x+ 0.4628x2 + 0.2657x3 + 0.1411x6+ .02 0.9920
+0.0194x7 + 0.0623x14 + 0.0044x15 + 0.0363x39

Γc(x) = x

6.5 The outer bounds on the performance of SDLT ensembles

As we have seen, although we seek to employ the relays in the fountain coded trans-

mission particularly because of the �nite length considerations, this setting motivated

us to introduce a family of fountain code ensembles which allows rigorous (and useful)

asymptotic analysis. This asymptotic analysis in turn admits linear programming op-

timisation framework, a recurring theme in the decentralised fountain code design.

Let us now formulate the dual program in order to calculate the outer bounds on the

intermediate performance of fountain codes aided with the relay, where t source nodes

employ LT codes with a predetermined degree distribution Φ(x). The fundamental

di�erence between the following dual program and the dual programs studied in the

previous Chapters is the restriction on the maximum degree of the degree distribution

Γ(x) to be optimised, i.e., dmax ≤ t.

146

0.9 0.95 1 1.05 1.1 1.15 1.2
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ρ

ζ=
ζ(

ρ)

Φ(x)=x, t=5

Φ(x)=0.05x+0.5x2+0.4x3+0.05x4, t=5
Φ(x)=x, t=10

Φ(x)=0.05x+0.5x2+0.4x3+0.05x4, t=10

Figure 6.4: The outer bounds on the intermediate performance of SDLT ensembles with predetermined
Φ(x)

max
PZ(z)

E[− lnZ] (6.10)

E[φ(1− Z)Φ(1− Z)d−1] ≤ 1

d
, d ∈ Nt,

Z ∈ [δ, 1].

Figure 6.4 shows the solutions to (6.10) for the distributions Φ(x) = x (coding at

the relay node only) and Φ(x) = 0.05x+ 0.5x2 + 0.4x3 + 0.05x4 in the cases of t = 5

and t = 10 source nodes. The horizontal axis ρ is the number of the received packets

per blocklength, whereas the vertical axis ζ represents the number of reconstructed

packets per blocklength. We plotted the outer bounds for ζ ≥ 0.8, where signi�cant

deterioration of the intermediate performance arises due to the low maximum degrees

of Γ(x). The results clearly show how coding at both the source nodes and at the

relay node (even with a heuristically chosen distribution Φ(x)) can outperform coding

only at the relay in terms of the necessary value of ρ for a particular value of ζ.

147

Chapter 7

Dual fountain codes for quantisation

7.1 Introduction

Whereas the use of the sparse graph codes in the pure channel coding problem [32] and

for some instances of distributed source coding and distributed joint source-channel

coding (cf. Chapter 5 and literature overview therein) is well established and char-

acterised, their assumed potential for the lossy source compression and quantisation

has not yet been fully understood. Namely, the structure of the posterior distribution

arising in the lossy source compression problems presents a substantial obstacle for

the convergence of the belief propagation algorithm in the form used for channel cod-

ing problems [125]. Thus, the novel algorithmic approaches are required. Advances

in the statistical physics community and their work [126, 127, 128] on the e�cient

approximative algorithms for Boolean satis�ability k-SAT problems at the core of

combinatorial optimisation theory [129], most notably the survey propagation (SP)

algorithms, inspired investigation [130] of the SP-based algorithms for lossy source

compression with sparse graph codes. Relying on the sense of operational duality

[91] between the lossy source compression and the channel coding problems, these

investigations mainly focused on LDGM codes [130, 131, 132, 133], which arise nat-

urally as the duals of LDPC codes. One of the �rst results on the topic was that

LDGM codes saturate the rate-distortion bounds for the binary erasure quantisation

(BEQ) problem [44], the toy source coding problem dual to the binary erasure chan-

nel (BEC) coding problem [40]. This Chapter reports preliminary results on unifying

the existing sparse graph lossy source compression framework and the digital foun-

148

tain paradigm. Namely, by applying the duals of fountain codes instead of the duals

of LDPC codes for the lossy source compression problem, possibility to construct an

inherently rate-adaptive lossy compression schemes seems plausible. In an analogous

manner to fountain channel codes seamlessly adapting to di�erent channel conditions,

lossy source compression based on dual fountain codes should be able to seamlessly

adapt to di�erent source distributions in order to reach the desired distortion level at

a compression rate close to the optimal. We focus on the problem of binary erasure

quantisation and apply the duals of fountain codes to this problem.

7.2 BEQ and Fountain Codes

Let us revisit data transmission over a binary erasure channel (BEC), one of the

simplest channel coding problems. Let us assume that a uniformly chosen message

block x ∈ Fk2 is encoded by a binary linear (n, k) code C ⊂ Fn2 and a codeword y ∈ C

is sent over a BEC of erasure probability pe. Received word z = (z1, z2, . . . , zn) is an

n-word over alphabet Z = {0, 1, ∗} where special symbol ∗ stands for �erasure�. Each

output bit zi, i ∈ Nn is an i.i.d. realisation of a random variable Z on Z with the

probability mass function given by: PZ(0) = PZ(1) = (1− pe)/2 and PZ(∗) = pe.

We can introduce a metric on Zn, with

dZ(a,b) =

∣∣∣∣∣{i ∈ {1, 2, . . . , n} : ai 6= bi}

∣∣∣∣∣, a,b ∈ Zn. (7.1)

Since a binary erasure channel does not introduce any bit-�ips, the distance between

the channel output and the transmitted codeword is precisely the number of erasures

induced by the channel.

It is natural to apply sparse graph codes, e.g., LDPC codes, to this problem. Good

LDPC codes should provide a reliable reconstruction of x at a �xed rate very close

to the capacity 1− pe, i.e.,

1− pe > R = k/n ≥ 1− pe − ϑ, (7.2)

for the large blocklengths k and a small gap to capacity ϑ.

Now let us consider a �dual� problem, i.e., BEQ. Namely, assume that an encoder

149

would like to compress source Z on Z which is distributed in the same way as the

output of a BEC. Thus, the n-word z should be mapped into a nearest codeword y

(from a code with dimension k) with respect to metric dZ (note that C ⊂ F n
2 ⊂ Zn).

If we wish to obtain the minimum average distortion equal to pe, the random variable

Y modelling the codeword bits must satisfy

PY |Z(y|z) = χ{y = z}, z ∈ {0, 1}. (7.3)

We can calculate the rate-distortion function as:

R(pe) = min
PY |Z

I(Y ;Z) (7.4)

= min
PY |Z

1− pe + pe
∑

y∈{0,1}

PY |Z(y|∗) log2

PY |Z(y|∗)
PY (y)


= 1− pe,

which is achieved by PY |Z(y|∗) = 1/2, for y ∈ {0, 1}. A good �quantiser� would now

be the one that compresses slightly above this rate-distortion function, i.e.,

1− pe < R = k/n < 1− pe + ϑ, (7.5)

in large blocklengths k. This forms the core of the problem of binary erasure quan-

tisation (BEQ) originally proposed in [44].

One may quickly realise that the attempt to use the same code structure as for

channel coding, e.g., LDPC codes, generally fails. There should be a codeword within

distance pe from each possible source vector, whereas the source vectors have the av-

erage of pe erasures, with no guarantee that the non-erased part of the source vector

consitutes a part of the valid codeword! This guarantee can be achieved only through

making the factor graph denser, i.e., by guaranteeing that each parity check equation

depends on at least one erased symbol with a large probability. This, in turn, implies

that the lower bound on the average degree of the parity check nodes would be log-

arithmic in blocklength by a standard application of the coupon collector's problem

(cf. subsection 2.2.2). This is precisely the argument behind the claim in [44] that

LDPC codes are generally bad quantisers. Thus, the authors focused their attention

150

on LDGM codes and showed that the duals of the capacity approaching LDPC chan-

nel codes for BEC yield the minimum compression rate approaching LDGM codes for

BEQ. The modi�ed quantisation algorithm based on the standard peeling decoder

[32] for erasure channels was applied. Although the signi�cance of the BEQ prob-

lem seems to be entirely theoretical, this result provided two important insights into

the area, that (i) graphical models may yield the nearly optimal codes for the lossy

compression and (ii) there may exist e�cient iterative decoding algorithms related to

belief propagation for other, more practical, quantisation problems.

In Section 2.2, an equivalent logarithmic lower bound is imposed on the average

degree of the output nodes in the LT decoding graph, also by using the analogy

with the coupon collector's problem. However, the key result of LT codes states that

there exist the output degree distributions which meet this lower bound and also

closely approach capacity at any erasure probability. Thus, the dismissal of LDPC

codes for lossy source compression problems, based solely on these arguments, may be

premature. Namely, LDPC codes would arise naturally as the duals of �truncated�

LT codes. Indeed, by setting the degree distribution of the variable nodes in an

LDPC code for BEQ to a robust soliton distribution, we can guarantee that each

parity check node is connected to at least one erased variable node such that the

non-erased coded bits constitute a valid part of some codeword. If we can translate

the peeling decoder to this new dual setting, we can construct a rate adaptive scheme

for BEQ. We will show that this is possible and construct the quantisation algorithm

of the same complexity as, and which fails and succeeds concurrently with the peeling

decoder.

The quantisation proceeds as follows: one �xes the number k of parity checks (just

like �xing the blocklength of fountain codes) and attempts the quantisation of a source

vector of the increasing length (just like attempting decoding on a fountain encoded

stream of the increasing length) at equal intervals. To form the factor graph, each bit

in the source vector is processed independently - one samples the degree distribution

Ω(x) to obtain the degree d of the corresponding variable node and connects it to d

distinct uniformly chosen parity check nodes. Alternatively, we can view this process

as on-the-�y construction of the parity check matrix, one column at a time. Larger

151

the length of the source vector n, larger the compression rate (n−k)/n, and once the

required compression rate for the desired level of distortion is reached, quantisation

succeeds. The rationale behind the quantisation algorithm lies within the equivalent

structure of the factor graphs of the dual codes (cf. Section 1.2).

7.2.1 Dual LT encoding for BEQ

Both the peeling decoder for BEC (Algorithm 2.2) and the dual LT quantiser pre-

sented in Algorithm 7.1, are simple graph pruning procedures which can be imple-

mented such that the number of operations scales linearly with the number of edges

in the graph. Furthermore, when a failure occurs, neither the LT decoder nor the

dual LT quantiser need to execute the algorithm from the beginning (with a full

factor graph with a larger number of nodes), but may simply embed the additional

nodes into the pruned version of the graph. If a robust soliton distribution is used,

the computational cost amounts to O(k log k) operations and if a light degree distri-

bution is employed, the computational cost is O(k). In [44], it was shown that the

algorithms for LDPC decoding over BEC(pe) and LDGM encoding for BEQ(1− pe)

concurrently fail or succeed when the codes used for both problems are dual. The

same clearly holds for the Algorithm 2.2 and Algorithm 7.1.

7.2.2 Asymptotic rates

The number of received (unerased) encoded symbols required to reconstruct the mes-

sage of length k encoded with the robust soliton distributed LT code can be expressed

as [51]:

k′ = k +O(
√
k ln2(k/δ)), (7.6)

where δ is an upper bound to the allowed failure probability of the decoder. This

means that the achieved code rate when transmitting over a BEC(pe) is at least:

k

n
=
k(1− pe)

k′
=

k(1− pe)
k +O(

√
k ln2(k/δ))

, (7.7)

which approaches the capacity 1 − pe, when k grows large. Since Algorithms 2.2

and 7.1 both fail or succeed together on the same realisation of the factor graph, the

152

Algorithm 7.1 Dual LT quantiser for BEQ
Input: source vector z ∈ Zn, factor graph G

H=(G
[1:n]
LT)ᵀ

Output: codeword y ∈ CH ⊂ Fn2 (or an indicator 0 that the quantisation has failed)

1. to each za, assign an auxiliary variable wa (wa = 1 will indicate that the value of za has been
decided)

(a) wa ← 0 if za = ∗
(b) wa ← ∗ otherwise

2. form and arbitrarily initialize vector e = (e1, e2, . . . , ek) of edges of the factor graph.

3. set counter c to zero.

4. assign a vector x to the parity check nodes, such that each xi, i ∈ Nk, is the summation of
the neighbouring unerased variables, i.e.,

xi ←
⊕

b∈N(i), zb 6=∗

zb, i ∈ Nk.

5. while x has at least one unerased sample xj 6= ∗ do

(a) �nd an erased variable node a, za = ∗, connected to exactly one unerased parity check
node i, xi 6= ∗,

(b) if there is no such variable node return 0 (quantisation fails)

(c) else

i. c← c+ 1.
ii. reserve variable node za to satisfy parity check equation corresponding to xi, ec ←

(i, a), za ← xi, xi ← ∗.
(d) end if

6. end while

7. For each node a such that za = ∗ (unreserved variable node), set za to an arbitrary binary
value and wa ← 1

8. Work backward through the reserved variable nodes and set them to satisfy corresponding
parity checks, i.e.,

(a) while c > 0,

i. (i, a)← ec, and
za ← za ⊕ (

⊕
b∈N(i), wb=1

zb),

ii. wa ← 1, c← c− 1.

(b) end while

9. return z

153

achieved compression rate for the BEQ(p̄e = 1− pe) problem is at most

n− k
n

=
k(1− p̄e) +O(

√
k ln2(k/δ))

k +O(
√
k ln2(k/δ))

, (7.8)

which also approaches the optimal rate of 1− p̄e. This way, we have proved that dual

LT codes with the robust soliton distribution at variable nodes approach the optimal

rate for any p̄e, i.e., for any source Z ∈ Z in BEQ.

7.2.3 Dual Raptor scenario

In order to allow the light degree distributions with a constant average degree, one

may introduce an equivalent to precoding in Raptor codes. The equivalent procedure

in dual scenario consists of introducing the additional parity check nodes, as well

as the additional �deterministic variable nodes� all equal to a ∗-value, to the factor

graph. These deterministic variable nodes correspond to the parity check nodes in

the static portion of the Raptor decoding graph. Thus, the outer high-rate LDPC

code as a precode for a Raptor code in the dual version becomes an outer low-rate

LDGM code, and the resulting code is, in fact, a dual Raptor code. Note that there

is a simple interpretation of this procedure in terms of the logarithmic lower bound

on the average variable node degree - additional variable nodes deterministically set

to ∗-value (and possibly connected to many parity check nodes) imply a much higher

probability that every parity check node is connected to at least one erased variable

node.

7.3 Simulation results

We have performed quantisation of source Z with pe = 0.5, using the dual LT code

with the number of parity checks �xed to k = 104. The length and rate of the dual

LT code were variable, starting from the optimal nmin = 20000 and were increased at

equal steps of ∆n = 100 up to the length (rate) where quantisation was successful,

i.e., where all the checks were satis�ed. Figure 7.1 shows the histogram of the achieved

compression rates. We used a dual LT code with the robust soliton variable degree

distribution Ψk,c,δ(x) with k = 104, c = 0.03, δ = 0.5, and performed 2000 trials. The

154

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

100

200

300

400

500

600

R=(n−k)/n : achieved compression rate

nu
m

be
r

of
 s

uc
ce

ss
fu

l q
ua

nt
iz

at
io

ns

optimal
compression

rate

Figure 7.1: Histogram showing the achieved compression rates with the dual LT based BEQ.

0.5 0.51 0.52 0.53 0.54 0.55 0.56
0

100

200

300

400

500

600

700

800

900

R=(n−k)/n : achieved compression rate

nu
m

be
r

of
 s

uc
ce

ss
fu

l q
ua

nt
iz

at
io

ns

optimal
compression

rate

Figure 7.2: Histogram showing the achieved compression rates with the dual Raptor based BEQ.

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

10
−3

10
−2

10
−1

10
0

compression rate

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

dual LT with Robust Soliton
dual raptor with const. av. degree

Figure 7.3: Quantisation failure probability of dual fountain codes as it decreases with the increase of the
compression rate.

155

average achieved compression rate was RAV = 0.5285.

Also, we have performed the quantisation of the same source Z, with the dual

raptor code. Starting number of checks was k = 104, and the precode was the dual to

the LDPC/Half hybrid high rate code described in Section 2.8. Variable node degree

distribution was set to Ωraptor(x) given in 2.13. Figure 7.2 shows the histogram of the

achieved compression rates. The average achieved rate RAV = 0.5266 was slightly

better than that of the dual LT codes. In addition to the lower computational cost

(O(k) instead of O(k log k)) dual raptor BEQ scheme has the advantage that the

probability of quantisation failure diminishes much faster as the compression rate

increases. The latter is illustrated in Figure 7.3.

7.4 Concluding remarks

At the time when sparse graph codes are sought to be employed for the lossy source

compression and quantisation and algorithmic obstacles for doing so are being con-

fronted, the question of applying principles of fountain coding in order to construct

the rate-adaptive lossy source coding methods arises naturally. Whereas the majority

of work to date investigates lossy source coding with LDGM codes, as the duals of

the capacity approaching LDPC codes, we argued that, by dualising fountain codes,

LDPC codes suitable for lossy source compression may be constructed as well. Fur-

thermore, these dual fountain codes exhibit the sought after property to seamlessly

adapt the rate to suit the source distribution and the desired distortion level.

156

Conclusions and Further Work

Sparse graph codes, and fountain codes in particular, are arguably one of the simplest

ways to do error correction coding, and yet they come equipped with such powerful

decoding algorithms, amenable to rigorous analysis, that one can invent a nearly opti-

mal channel coding scheme quickly and painlessly. This thesis addressed the problem

of fountain code design in di�erent settings, modi�ed in some way, decentralised or

distributed. For example, one may want to protect scalable video and add unequal

protection to data, while multicasting to a large number of heterogeneous receivers

(Chapter 4). Or, the transmitter may need to communicate only some supplementary

data to the set of receivers who already possess most of the message, but possibly

di�erent parts of it (Chapter 5). The problem may also consist of a large number of

non-cooperating transmitters independently encoding their respective possibly corre-

lated messages, each of them broadcasting their encoded bitstreams to the receivers

(Chapters 3 and 5), or communicating to a common relay (Chapter 6). Perhaps a

di�erent question by nature is how one can make use of the insights from fountain

coding in order to construct rate adaptive quantisation schemes (Chapter 7). We

addressed each of these problems, and for the models we studied, the approach based

on fountain codes, with the judicious choice of the code parameters, has not failed

to provide a nearly optimal coding scheme with the exceptionally low computational

complexity. Of course, the code design for such problems is a vastly more challenging

problem than that of the standard fountain coding, as it consists of the entangled

problems of channel coding, distributed source coding and distributed joint source-

channel coding. Nonetheless, the methods we have developed by generalising and

adapting standard asymptotic fountain code analysis have proven useful in formu-

lating the optimisation methods in a number of instances, each of these instances

157

yielding their own set of the �optimal� code parameters. One of the obvious future

topics of interest, key to the practical implementation of fountain coding in decen-

tralised networked communications, is to extend the developed code design techniques

to short length codes. Insights from [134, 135] and scaling laws [136] can be used to

attack the short length code design problem.

The research area of fountain codes is still relatively new and there are several

untouched topics concerned with the application of fountain coding principles in

various scenarios. Notably, source coding with fountain codes is receiving increasing

attention and there is still much to understand in how one can formally apply such

inherently rate-adaptive approach to compression and quantisation. We glimpsed on

some possibilities within this topic in Chapter 7, but signi�cant algorithmic advances

need to be made in order to apply such an approach in a more realistic quantisation

scenario. The starting point of this approach would be the formal understanding

of the already mentioned Survey Propagation algorithm [128] as applied to fountain

coding.

Further, there are some subtle similarities between fountain coding and recently

introduced compressed sensing paradigm, as compressed sensing can be viewed as

Bayesian inference problem (cf. [137, 138] and references therein). Indeed, fountain

coding with noisy side information studied in Section 5.5 can also be interpreted as

compressed sensing of sparse binary vectors (our side information can be �xed to an

all-zero vector). Whether some of the methodologies used in fountain code design

can be utilised to construct measurement matrices for compressed sensing via belief

propagation in a more realistic setting is open to speculation. Nonetheless, this is

another avenue to explore.

Finally, there is much to understand in the relationship of fountain coding prin-

ciples and network coding, particularly in the context of wireless sensor networks,

where low complexity solutions are sought. The problem of robust transmission of

data distributed across a vast number of nodes in a network remains a challenge

in information theory. Wireless sensor network typically involves a set of inexpen-

sive devices with low battery power and modest computational resources observing

naturally occurring data with the high spatio-temporal dependencies used in, e.g.,

158

meteorological and environmental applications. The challenge lies within the number

of goals which need to be met concurrently: sensors should minimise their energy

consumption - and thus make a minimal number of transmissions to a distant fusion

centre - while keeping an encoding scheme universal (applicable to di�erent channel

models), scalable and robust to sensor failures. Some results on fountain and simi-

lar coding schemes in sensor networks have been reported in [139, 140, 141], which

in addition to the advances in distributed and decentralised fountain code design,

including those presented in this thesis, motivate the further research e�orts to be

directed to construction of low complexity network coding schemes based on fountain

codes.

159

Appendix A

Belief Propagation algorithm

Let x = (x1, x2, ..., xk) ∈ X k be a collection of k variables from some alphabet X ,

and let g(x) be a real-valued function on X k. Let us refer to a particular value of x

as con�guration. The real-valued marginal function gi(x) on X , for i ∈ Nk is de�ned

as the sum of the values of g(x) over all con�gurations x such that xi = x or

gi(x) =
∑

x1,...,xi−1,xi+1,...,xk

g(x1, . . . , xi−1, x, xi+1, . . . , xk).

With abuse of notation, previous equation is often, for the sake of simplicity, written

as:

g(xi) =
∑
∼xi

g(x1, . . . , xk),

where g(xi) denotes the value of gi(x) when x = xi and
∑
∼ denotes the variables

which are �xed in summation. Suppose that g(x) factors into a product of n local

functions f1, f2, . . . , fn:

g(x) =
n∏
j=1

fj(yj), (A.1)

where yj ⊂ x, meaning that each function fj depends only on a certain subset of

the set of all variables. Marginal functions can be e�ciently computed by exploting

the factorisation and distributive law summations. The factorisation (A.1) can be

represented by a bipartite graph G = (V, F,E), called the factor graph, where one

set of nodes V corresponds to the variables x1, x2, ..., xk, whereas the other set of

nodes F corresponds to the factors f1, f2, . . . , fn in the factorisation (A.1). The edge

160

ix

…
jf

lx

… …

()
jf ixµ

() ()i f ig x xµ= ∏

()
lx lxµ

~

()

() ()

j

i

f i

j j x
x

x

f x

µ

µ

=

∑ ∏y

… …

…

Figure A.1: The recursive marginalisation of a multivariate function on a cycle-free factor graph

xifj ∈ E between variable node xi and factor node fj indicates that the function fj

has xi as one of its arguments. Typically on the factor graph, the variable nodes are

denoted with circles, while factor nodes are denoted with squares.

When the factor graph G is a tree it captures exactly the arithmetic operations

that compute the marginal function g(xi), i ∈ Nk, i.e., G is an expression tree for

that particular computation [43]. It is convenient to think about computation as of

passing messages among the neighbouring nodes in the factor graph. These passed

messages are an appropriate description of the marginal function.

Derivation of marginal function of a speci�c variable xi can be done recursively.

Let us draw the factor graph as in Figure A.1, i.e., as a tree T rooted in xi. Then,

the children of xi are the factors which contain xi. Each of these neighbouring factors

determines a subtree of T , and within each of the subtrees the sets of constituent

variables are disjoint. Let us assume that these factors have optimally determined

the marginalisation of xi in each corresponding subtree (i.e., the marginal function

of the product of all factors constituent in the subtree) and passed it as the message

µfj
(xi) to xi. In order to calculate its marginal function, node xi simply multiplies

the incoming messages.

Let us now take a look at the subtree of a speci�c child factor node fj of xi. Each

of its children determines another subtree of T . We may assume that each of the

children xl has recursively calculated the marginalisation µxl
(xl) with respect to xl

in its respective subtree, but how should fj process these messages? Since fj needs

marginalisation with respect to xi, it needs to multiply all the received messages

with its kernel function fj(xi, . . .) and marginalise the result with respect to xi. This

process can continue recursively, until it reaches an empty subtree, i.e., the leaf of

161

Algorithm A.1 Belief propagation algorithm on a tree
Input: Factor tree T of a function g rooted in v = xi

Output: µv(xi) = g(xi), marginal function of g with respect to the variable xi

1. Initialize leaf nodes as follows: µv(xl) = 1, for variable nodes v = xl, and µv(xl) = fj(xl),
where v = fj is a factor node and child of xl.

2. if all the children of the unprocessed parent node xv are processed, do

(a) if v = xl is a variable node, set

µv(xl) =
∏

f is a child of v

µf (xl),

(b) if v = fj is a factor node, child of xl, set

µv(xl) =
∑
∼xl

fj(yj)
∏

u is a child of fj

µu(u).

the tree. In the case of the variable node leaf, the message is simply 1, since the

marginalisation with respect to the variable leaf cannot be further simpli�ed. In the

case of the factor node leaf, the message is the (kernel) factor function itself, since the

marginalisation of the function of one argument with respect to its only argument is

the function itself.

Let us summarize this general message passing algorithm for the computation

of marginal function. Let T be a factor tree of the factorisation of a multivariate

function g, rooted in the variable node xi. With each node v, we associate a function

µv of a single variable which is either the variable associated with node v if v is

variable node, or the variable associated with the parent of v if v is a factor node. We

can think of these functions as messages passed along the edges from the leaves of T

to its root, since they are computed dynamically across the levels of the tree (at the

leaves �rst). Let us call the node processed when its µ-function has been calculated.

The BP message passing rules are given in Algorithm A.1.

Often in practice, we are interested in computing all the marginals rather than

just a marginalisation with respect to single variable. It is easy to show that this can

be done simultaneously on a single tree (there is no need for the rearrangement of

nodes such that the tree is rooted in the marginalisation variable), since the message

passed along the particular edge in one direction does not depend on which variable

is being marginalised, so the calculation of the message passed from v to u can start

as soon as v has received messages from all its neighbours other than u.

162

The standard iterative decoders for LDPC codes and turbo codes, amongst others,

can be viewed as instances of exactly these message-passing updates in various factor

graphs.

163

Appendix B

Linear programs and their duals

Linear programs are the problems of maximization (or minimization) of a linear

function subject to linear constraints. The theory of linear programming arose during

the World War II from complex expenditure planning of military operations [142].

Today, it falls within the theory of convex optimisation and is also considered to be

an important part of operations research. The input data of a linear program (LP)

is a triple (A,b, c) where A = (aji) is a real m× n matrix, b = (b1, b2, . . . , bm) ∈ Rm

and c = (c1, c2, . . . , cn) ∈ Rn. The problem is to �nd the vales for a collection of

n nonnegative real decision variables x = (x1, x2, . . . , xn) ∈ Rn which maximize the

linear objective function c1x1 + c2x2 + · · · + cnxn, subject to m linear constraints

a1
ix1 + a2

ix2 + · · · + ani xn ≤ bi, i ∈ Nm. With some abuse of notation, LP is usually

written in the standard (canonical) matrix form as:

max cᵀx

Ax ≤ b

x ≥ 0

(B.1)

The constraints de�ne a feasible region P = {x : Ax ≤ b, x ≥ 0}, which is

generally a convex polytope in Rn, and an optimal solution can be found in one of

its vertices. The typical approach to solving linear programs involves the simplex

algorithm [143, 144] which runs along the edges of polytope P .

The important part of the theory of linear programming is the duality theory

which originated with the ideas of Von Neumann [142]. Duality theory states that

for every linear program there is a certain complementary program, called the dual

164

program, such that a solution to either one of the two determines a solution to both.

The dual program of the linear program in (B.1) is given by

min bᵀy

yᵀA ≥ cᵀ

y ≥ 0.

(B.2)

In general, if x ∈ P is a feasible solution for the primal, (B.1), and y ∈ Q, where

Q ={y : yᵀA ≥ cᵀ, y ≥ 0}, is a feasible solution for the dual, (B.2), then clearly:

cᵀx ≤ yᵀAx ≤ yᵀb, (B.3)

and thus the value of the objective function of the primal is always less than the

value of the objective function of the dual. However, the key result of the duality

theory is that, remarkably, the two objective functions are equal for any x∗ and y∗

which are, respectively, optimal solutions for the primal and the dual program. Cf.

[145] for an excellent companion to the theory of linear programming.

165

Bibliography

[1] D. Sejdinovic, R. Piechocki, and A. Doufexi, �Note on systematic raptor design,� in Proc.
IEEE Winterschool on Coding and Information Theory, 2007, p. 31.

[2] D. Sejdinovic, R. Piechocki, A. Doufexi, and M. Ismail, �Decentralised distributed fountain
coding: asymptotic analysis and design,� IEEE Communications Letters, vol. 14, no. 1, pp.
42�44, Jan. 20010.

[3] N. Rahnavard, B. N. Vellambi, and F. Fekri, �Rateless codes with unequal error protection
property,� IEEE Transactions on Information Theory, vol. 53, no. 4, pp. 1521�1532, Apr.
2007.

[4] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. J. Piechocki, �Expanding window
fountain codes for unequal error protection,� in Proc. Asilomar Conf. on Signals, Systems and
Computers, Nov. 4�7, 2007, pp. 1020�1024.

[5] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V.Senk, and R. Piechocki, �Expanding window
fountain codes for unequal error protection,� IEEE Transactions on Communications, vol. 57,
no. 9, pp. 2510�2516, 2009.

[6] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. Xiong, �Scalable data
multicast using expanding window fountain codes,� in Proc. Allerton Conf. Comm., Control,
and Computing, 2007.

[7] ��, �Expanding window fountain codes for scalable video multicast,� in Proc. IEEE Inter-
national Conference on Multimedia and Expo ICME, Jun. 2008, pp. 77�80.

[8] ��, �Scalable video multicast using expanding window fountain codes,� IEEE Transactions
on Multimedia, vol. 11, no. 6, pp. 1094�1104, Oct. 2009.

[9] D. Sejdinovic, R. J. Piechocki, A. Doufexi, and M. Ismail, �Fountain coding with decoder side
information,� in Proc. IEEE International Conference on Communications ICC, May 19�23,
2008, pp. 4477�4482.

[10] D. Sejdinovic, R. Piechocki, A. Doufexi, and M. Ismail, �Fountain code design for data multi-
cast with side information,� IEEE Transactions on Wireless Communications, vol. 8, no. 10,
pp. 5155�5165, Oct. 2009.

[11] D. Sejdinovic, V. Ponnampalam, R. J. Piechocki, and A. Doufexi, �The throughput analysis of
di�erent ir-harq schemes based on fountain codes,� in Proc. IEEE Wireless Communications
and Networking Conference WCNC, Mar. 2008, pp. 267�272.

[12] D. Sejdinovic, R. Piechocki, and A. Doufexi, �Rateless distributed source code design,� in
Proc. International Mobile Multimedia Communications Conference MobiMedia, 2009.

[13] S. Puducheri, J. Kliewer, and T. E. Fuja, �Distributed lt codes,� in Proc. IEEE International
Symposium on Information Theory ISIT, Jul. 9�14, 2006, pp. 987�991.

[14] ��, �The design and performance of distributed lt codes,� IEEE Transactions on Information
Theory, vol. 53, no. 10, pp. 3740�3754, Oct. 2007.

[15] D. Sejdinovic, R. J. Piechocki, and A. Doufexi, �And-or tree analysis of distributed lt codes,�
in Proc. IEEE Information Theory Workshop ITW, Jun. 12�10, 2009, pp. 261�265.

[16] D. Sejdinovic, R. J. Piechocki, A. Doufexi, and M. Ismail, �Rate adaptive binary erasure
quantization with dual fountain codes,� in Proc. IEEE Global Telecommunications Conference
GLOBECOM, Nov. 2008, pp. 1�5.

166

[17] C. E. Shannon, �A mathematical theory of communication,� Bell System Technical Journal,
vol. 27, 1948.

[18] J. Wozencraft and B. Rei�en, Sequential Decoding. MIT Press, Cambridge, MA, USA, 1961.

[19] J. T. Co�ey and R. M. Goodman, �Any code of which we cannot think is good,� IEEE
Transactions on Information Theory, vol. 36, no. 6, pp. 1453�1461, Nov. 1990.

[20] C. Berrou, A. Glavieux, and P. Thitimajshima, �Near shannon limit error-correcting coding
and decoding: Turbo-codes,� in Proc. IEEE International Conference on Communications
ICC, vol. 2, May 23�26, 1993, pp. 1064�1070.

[21] C. Berrou and A. Glavieux, �Near optimum error correcting coding and decoding: turbo-
codes,� IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261�1271, Oct. 1996.

[22] A. Burr, �Turbo-codes: the ultimate error control codes?� IEE Electronics and Communication
Engineering Journal, vol. 13, no. 4, pp. 155�165, Aug. 2001.

[23] K. Gracie and M.-H. Hamon, �Turbo and turbo-like codes: Principles and applications in
telecommunications,� Proceedings of the IEEE, vol. 95, no. 6, pp. 1228�1254, Jun. 2007.

[24] R. Gallager, Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, USA, 1963.

[25] D. J. C. MacKay and R. M. Neal, �Near shannon limit performance of low density parity check
codes,� Electronics Letters, vol. 32, no. 18, p. 1645, Aug. 29, 1996.

[26] ��, �Near shannon limit performance of low density parity check codes,� Electronics Letters,
vol. 33, no. 6, pp. 457�458, Mar. 13, 1997.

[27] D. J. C. MacKay, �Good error-correcting codes based on very sparse matrices,� IEEE Trans-
actions on Information Theory, vol. 45, no. 2, pp. 399�431, Mar. 1999.

[28] N. Wiberg, H.-A. Loeliger, and R. Kötter, �Codes and iterative decoding on general graphs,�
Euro. Trans. Telecomms., vol. 6, pp. 513�525, 1995.

[29] N. Wiberg, �Codes and decoding on general graphs,� Ph.D. dissertation, Linköping Studies in
Science and Technology, Dissertation 440, 1996.

[30] M. Sipser and D. A. Spielman, �Expander codes,� in Proc. Symposium on Foundations of
Computer Science FOCS, Nov. 20�22, 1994, pp. 566�576.

[31] ��, �Expander codes,� IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1710�
1722, Nov. 1996.

[32] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press, 2008.

[33] S.-Y. Chung, J. Forney, G. D., T. J. Richardson, and R. Urbanke, �On the design of low-
density parity-check codes within 0.0045 db of the shannon limit,� IEEE Communications
Letters, vol. 5, no. 2, pp. 58�60, Feb. 2001.

[34] T. J. Richardson and R. L. Urbanke, �The capacity of low-density parity-check codes under
message-passing decoding,� IEEE Transactions on Information Theory, vol. 47, no. 2, pp.
599�618, Feb. 2001.

[35] C. Bishop, Pattern recognition and machine learning. Springer, 2006, ch. 8. Graphical Models,
pp. 359�422.

[36] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

[37] R. Tanner, �A recursive approach to low complexity codes,� IEEE Transactions on Information
Theory, vol. 27, no. 5, pp. 533�547, Sep. 1981.

[38] D. J. C. MacKay, �Good error-correcting codes based on very sparse matrices,� in Proc. IEEE
International Symposium on Information Theory ISIT, Jun. 29�Jul. 4, 1997, p. 113.

[39] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, �Turbo decoding as an instance of pearl's
�belief propagation� algorithm,� IEEE Journal on Selected Areas in Communications, vol. 16,
no. 2, pp. 140�152, Feb. 1998.

167

[40] P. Elias, �Coding for two noisy channels,� Proc. 3rd London Symp. Information Theory, pp.
61�76, 1955.

[41] E. Berlekamp, R. McEliece, and H. van Tilborg, �On the inherent intractability of certain
coding problems,� IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 384�386,
May 1978.

[42] S. M. Aji and R. J. McEliece, �The generalized distributive law,� IEEE Transactions on
Information Theory, vol. 46, no. 2, pp. 325�343, Mar. 2000.

[43] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, �Factor graphs and the sum-product algo-
rithm,� IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498�519, Feb. 2001.

[44] E. Martinian and J. S. Yedidia, �Iterative quantization using codes on graphs,� in Proc. Aller-
ton Conf. Comm., Control, and Computing, 2003.

[45] C. Diot, W. Dabbous, and J. Crowcroft, �Multipoint communication: a survey of protocols,
functions, and mechanisms,� IEEE Journal on Selected Areas in Communications, vol. 15,
no. 3, pp. 277�290, Apr. 1997.

[46] K. Obraczka, �Multicast transport protocols: a survey and taxonomy,� IEEE Communications
Magazine, vol. 36, no. 1, pp. 94�102, Jan. 1998.

[47] I. Reed and G. Solomon, �Polynomial codes over certain �nite �elds,� SIAM Journal of Applied
Math., vol. 8, pp. 300�304, 1960.

[48] S. Wicker and V. Bhargava, Eds., Reed-Solomon Codes and Their Applications. IEEE Press,
Piscataway, NJ, USA, 1994.

[49] J. van Lint, Introduction to Coding Theory. Springer-Verlag (2nd Ed.), 1992.

[50] D. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

[51] M. Luby, �Lt codes,� in Proc. 43rd Annual IEEE Symposium on Foundations of Computer
Science FOCS, Nov. 16�19, 2002, pp. 271�280.

[52] A. Shokrollahi, �Raptor codes,� IEEE Transactions on Information Theory, vol. 52, no. 6, pp.
2551�2567, Jun. 2006.

[53] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, �A digital fountain approach to reliable
distribution of bulk data,� in Proc. ACM SIGCOMM. New York, NY, USA: ACM, 1998, pp.
56�67.

[54] H. Jenkac, T. Stockhammer, and W. Xu, �Asynchronous and reliable on-demand media broad-
cast,� IEEE Network, vol. 20, no. 2, pp. 14�20, Mar. 2006.

[55] ��, �Reliable wireless broadcast with asynchronous access: Data carousels versus fountain
codes,� in Proc. IST Mobile & Wireless Communications Summit, 2006.

[56] S. Shamai (Shitz), I. E. Telatar, and S. Verdu, �Fountain capacity,� IEEE Transactions on
Information Theory, vol. 53, no. 11, pp. 4372�4376, Nov. 2007.

[57] M. Luby, �Information additive code generator and decoder for communication systems,� U.S.
Patent 6 307 487, oct 23, 2001.

[58] ��, �Information additive code generator and decoder for communication systems,� U.S.
Patent 6 373 406, apr 16, 2002.

[59] C. Fragouli and E. Soljanin, Foundations and Trends in Networking: Network coding applica-
tions. NOW publishers, 2007.

[60] A. Shokrollahi, �Raptor codes,� in Proc. International Symposium on Information Theory
ISIT, Jun. 27�Jul. 2, 2004, p. 36.

[61] A. Shokrollahi, S. Lassen, and M. Luby, �Multi-stage code generator and decoder for commu-
nication systems,� U.S. Patent 7 068 729, 2006.

168

[62] P. Maymounkov, �Online codes,� NYU Technical Report TR2003-883, Tech. Rep., Nov. 2002.
[Online]. Available: pdos.csail.mit.edu/ petar/papers/maymounkov-online.pdf

[63] P. Maymounkov and D. Mazieres, �Rateless codes and big downloads,� in Proc. International
Workshop on peer-to-peer Systems, 2003.

[64] M. Fresia, L. Vandendorpe, and H. V. Poor, �Distributed source coding using raptor codes for
hidden markov sources,� IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2868�
2875, Jul. 2009.

[65] M. Luby, M. Mitzenmacher, and A. Shokrollahi, �Analysis of random processes via and-or tree
evaluation,� in Proc. 9th Annual SIAM Symp. on Discrete Algorithms SODA, 1998.

[66] S. Sanghavi, �Intermediate performance of rateless codes,� in Proc. IEEE Information Theory
Workshop ITW, Sep. 2�6, 2007, pp. 478�482.

[67] R. Darling and J. Norris, �Structure of large random hypergraphs,� Ann. Appl. Probab., vol.
15(1A), pp. 125�152, 2005.

[68] O. Etesami and A. Shokrollahi, �Raptor codes on binary memoryless symmetric channels,�
IEEE Transactions on Information Theory, vol. 52, no. 5, pp. 2033�2051, May 2006.

[69] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, �Improved low-density
parity-check codes using irregular graphs,� IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 585�598, Feb. 2001.

[70] D. Divsalar, S. Dolinar, and F. Pollara, �Iterative turbo decoder analysis based on density
evolution,� IEEE Journal on Selected Areas in Communications, vol. 19, no. 5, pp. 891�907,
May 2001.

[71] G. Li, I. J. Fair, and W. A. Krzymien, �Density evolution for nonbinary ldpc codes under
gaussian approximation,� IEEE Transactions on Information Theory, vol. 55, no. 3, pp. 997�
1015, Mar. 2009.

[72] V. Rathi and R. Urbanke, �Density evolution, thresholds and the stability condition for non-
binary ldpc codes,� IEE Proceedings-Communications, vol. 152, no. 6, pp. 1069�1074, Dec. 9,
2005.

[73] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, �Density evolution for asymmetric memoryless
channels,� IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4216�4236, Dec.
2005.

[74] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, �Analysis of sum-product decoding of
low-density parity-check codes using a gaussian approximation,� IEEE Transactions on Infor-
mation Theory, vol. 47, no. 2, pp. 657�670, Feb. 2001.

[75] M. Ardakani and F. R. Kschischang, �A more accurate one-dimensional analysis and design of
irregular ldpc codes,� IEEE Transactions on Communications, vol. 52, no. 12, pp. 2106�2114,
Dec. 2004.

[76] S. ten Brink, �Convergence of iterative decoding,� Electronics Letters, vol. 35, no. 13, pp.
1117�1119, Jun. 24, 1999.

[77] R. Palanki and J. S. Yedidia, �Rateless codes on noisy channels,� in Proc. International Sym-
posium on Information Theory ISIT, Jun. 27�Jul. 2, 2004, p. 37.

[78] H. Jenkac, T. Mayer, T. Stockhammer, and W. Xu, �Soft decoding of lt-codes for wireless
broadcast,� in Proc. IST Mobile & Wireless Communications Summit, June 2005.

[79] J. Castura and Y. Mao, �Rateless coding over fading channels,� IEEE Communications Letters,
vol. 10, no. 1, pp. 46�48, Jan. 2006.

[80] Z. Cheng, J. Castura, and Y. Mao, �On the design of raptor codes for binary-input gaussian
channels,� in Proc. IEEE International Symposium on Information Theory ISIT, Jun. 24�29,
2007, pp. 426�430.

[81] G. V. Balakin, �The distribution of the rank of random matrices over a �nite �eld,� Theory of
Probability and its Applications, vol. 8, no. 4, pp. 594�605, 1968.

169

[82] J. Bloemer, R. Karp, and E. Welzl, �The rank of sparse random matrices over �nite �elds,�
Random Struct. Algorithms, vol. 10, no. 4, pp. 407�419, 1997.

[83] C. Cooper, �On the distribution of rank of a random matrix over a �nite �eld,� Random Struct.
Algorithms, vol. 17(3-4), pp. 197�221, 2000.

[84] C. Studholme and I. Blake, �Windowed erasure codes,� in Proc. IEEE International Symposium
on Information Theory ISIT, Jul. 9�14, 2006, pp. 509�513.

[85] M. C. O. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, �Sliding-window digital
fountain codes for streaming of multimedia contents,� in Proc. IEEE International Symposium
on Circuits and Systems ISCAS, May 27�30, 2007, pp. 3467�3470.

[86] G. Caire, S. Shamai, A. Shokrollahi, and S. Verdú, Algebraic Coding Theory and Information
Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 68.
Amer. Math. Soc., 2006, ch. Fountain codes for lossless data compression, pp. 1�20.

[87] G. Caire, S. Shamai, and S. Verdu, �Universal data compression with ldpc codes,� in Proc.
Third International Symposium On Turbo Codes and Related Topics, Sep. 2003, pp. 55�58.

[88] M. Burrows and D. J. Wheeler, �A block-sorting lossless data compression algorithm,� Digital
Systems Res. Ctr., Palo Alto, CA, Tech. Rep. SRC 124, Tech. Rep., 1994.

[89] B. N. Ndzana, A. Shokrollahi, and J. Abel, �Burrows-wheeler text compression with fountain
codes,� in Proc. Data Compression Conference DCC, Mar. 28�30, 2006.

[90] B. T. Maharaj and F. P. S. Luus, �Decremental redundancy compression with fountain codes,�
in Proc. IEEE International Conference on Wireless and Mobile Computing WIMOB, Oct. 12�
14, 2008, pp. 328�332.

[91] A. Gupta and S. Verdu, �Operational duality between lossy compression and channel cod-
ing: Channel decoders as lossy compressors,� in Proc. Information Theory and Applications
Workshop, Feb. 8�13, 2009, pp. 119�123.

[92] M. Fresia and L. Vandendorpe, �Distributed source coding using raptor codes,� in Proc. IEEE
Global Telecommunications Conference GLOBECOM, Nov. 26�30, 2007, pp. 1587�1591.

[93] B. Ndzana, A. Shokrollahi, and J. Abel, �Fountain codes for the slepian-wolf problem,� in
Proc. Allerton Conf. Comm., Control, and Computing, 2006.

[94] A. W. Eckford and W. Yu, �Rateless slepian-wolf codes,� in Proc. Asilomar Conf. on Signals,
Systems and Computers, Oct. 2005, pp. 1757�1761.

[95] S. Agarwal, A. Hagedorn, and A. Trachtenberg, �Adaptive rateless coding under partial infor-
mation,� in Proc. Information Theory and Applications Workshop, Jan. 2008, pp. 5�11.

[96] A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtenberg, �Rateless coding with feed-
back,� in Proc. IEEE Conference on Computer Communications INFOCOM, Apr. 19�25, 2009,
pp. 1791�1799.

[97] N. Dutsch, H. Jenkac, T. Mayer, and J. Hagenauer, �Joint source-channel-fountain coding
for asynchronous broadcast,� in Proc. IST Mobile & Wireless Communications Summit, June
2005.

[98] Q. Xu, V. Stankovic, and Z. Xiong, �Distributed joint source-channel coding of video using
raptor codes,� in Proc. Data Compression Conference DCC, Mar. 29�31, 2005, p. 491.

[99] ��, �Distributed joint source-channel coding of video using raptor codes,� IEEE Journal on
Selected Areas in Communications, vol. 25, no. 4, pp. 851�861, May 2007.

[100] Raptor technology: Advanced fec technology for streaming media and data distribution
applications. [Online]. Available: http://www.digitalfountain.com/

[101] Technical Speci�cation Group Services and System Aspects Multimedia Broadcast/Multicast
Service: Protocols and Codecs, 3GPP TS 26.346 V7.0.0, 2007 Std.

[102] IP-Datacast over DVB-H: Content Delivery Protocols, ETSI TS 102.472 V1.2.1, 2006 Std.

170

[103] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, �Raptor codes for reliable
download delivery in wireless broadcast systems,� in Proc. 3rd IEEE Consumer Communica-
tions and Networking Conference CCNC, vol. 1, Jan. 8�10, 2006, pp. 192�197.

[104] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, �Reliable multimedia download delivery
in cellular broadcast networks,� IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 235�
246, Mar. 2007.

[105] C. Harrelson, L. Ip, and W. Wang, �Limited randomness lt codes,� in Proc. Allerton Conf.
Comm., Control, and Computing, 2003.

[106] R. Hamzaoui, V. Stankovic, and Z. Xiong, �Optimized error protection of scalable image bit
streams,� IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 91�107, Nov. 2005.

[107] H. Schwarz, D. Marpe, and T. Wiegand, �Overview of the scalable video coding extension of
the h.264/avc standard,� IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103�1120, Sep. 2007.

[108] N. Rahnavard and F. Fekri, �Finite-length unequal error protection rateless codes: design and
analysis,� in Proc. IEEE Global Telecommunications Conference GLOBECOM, vol. 3, Nov.
28�Dec. 2, 2005, p. 5pp.

[109] U. C. Kozat and S. A. Ramprashad, �Unequal error protection rateless codes for scalable in-
formation delivery in mobile networks,� in Proc. IEEE International Conference on Computer
Communications INFOCOM, May 6�12, 2007, pp. 2316�2320.

[110] A. G. Dimakis, J. Wang, and K. Ramchandran, �Unequal growth codes: Intermediate per-
formance and unequal error protection for video streaming,� in Proc. IEEE Workshop on
Multimedia Signal Processing MMSP, Oct. 1�3, 2007, pp. 107�110.

[111] S. Ahmad, R. Hamzaoui, and M. Al-Akaidi, �Unequal error protection using lt codes and block
duplication,� in Proc. Middle Eastern Multiconference on Simulation and Modelling MESM,
2008.

[112] J.-P. Wagner, J. Chakareski, and P. Frossard, �Streaming of scalable video from multiple
servers using rateless codes,� in Proc. IEEE International Conference on Multimedia and
Expo ICME, Jul. 9�12, 2006, pp. 1501�1504.

[113] S. Argyropoulos, A. S. Tan, N. Thomos, E. Arikan, and M. G. Strintzis, �Robust transmission
of multi-view video streams using �exible macroblock ordering and systematic lt codes,� in
Proc. 3DTV Conference, May 7�9, 2007, pp. 1�4.

[114] C. Hellge, T. Schierl, and T. Wiegand, �Multidimensional layered forward error correction
using rateless codes,� in Proc. IEEE International Conference on Communications ICC, May
19�23, 2008, pp. 480�484.

[115] K. Nybom, S. Grönroos, and J. Björkvist, �Expanding window fountain coded scalable video
in broadcasting,� in Proc. COST 2100 TD(09)934. Vienna, Austria, September 28�30, 2009.

[116] Q. Xu, V. Stankovic, and Z. Xiong, �Wynerziv video compression and fountain codes for
receiver-driven layered multicast,� IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 17, no. 7, pp. 901�906, Jul. 2007.

[117] T. Stockhammer, T. Gasiba, W. Samad, T. Schierl, H. Jenkac, T. Wiegand, and W. Xu,
�Nested harmonic broadcasting for scalable video over mobile datacast channels,� Wireless
Communications and Mobile Computing (Wiley), vol. 7(2), pp. 235�256, 2007.

[118] T. Schierl, S. Johansen, A. Perkis, and T. Wiegand, �Rateless scalable video coding for overlay
multisource streaming in manets,� Journal of Visual Communication and Image Representa-
tion, vol. 19(9), pp. 500�507, 2008.

[119] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, �Overview of the h.264/avc video
coding standard,� IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 560�576, Jul. 2003.

[120] C.-J. Chang, L.-S. Tsai, and D.-S. Shiu, �Finite length analysis of generalized expanding
window fountain codes,� in Proc. IEEE Vehicular Technology Conf. VTC-Fall. Anchorage,
Alaska, USA, September 20�23, 2009.

171

[121] D. Slepian and J. Wolf, �Noiseless coding of correlated information sources,� IEEE Transac-
tions on Information Theory, vol. 19, no. 4, pp. 471�480, Jul. 1973.

[122] S. Shamai and S. Verdú, �Capacity of channels with uncoded side information,� Euro. Trans.
Telecomms., vol. 6, pp. 587�600, 1995.

[123] S. Agarwal, A. Hagedorn, and A. Trachtenberg, �Near optimal update-broadcast of data sets,�
in Proc. International Conference on Mobile Data Management, May 2007, pp. 356�360.

[124] A. Renyi, �A characterization of poisson processes,� Magyar Tud. Akad. Mat. Kutaló Int.
Közl., vol. 1, pp. 519�527, 1956.

[125] M. J. Wainwright, �Sparse graph codes for side information and binning,� IEEE Signal Pro-
cessing Magazine, vol. 24, no. 5, pp. 47�57, Sep. 2007.

[126] M. Mezard, G. Parisi, and R. Zecchina, �Analytic and algorithmic solution of random satis�-
ability problems,� Science, vol. 297, p. 812, 2002.

[127] M. Mezard and R. Zecchina, �Random k-satis�ability: from an analytic solution to an e�cient
algorithm,� Phys. Rev. E, vol. 66(1), pp. 2001�2027, 2002.

[128] A. Braunstein, M. Mezard, and R. Zecchina, �Survey propagation: an algorithm for satis�a-
bility,� Random Struct. Algorithms, vol. 27, pp. 201�226, 2005.

[129] D. Du, J. Gu, and P. M. Pardalos, Eds., Satis�ability Problem: Theory and Applications.
Amer. Math. Soc., Providence, RI, USA, 1997.

[130] M. J. Wainwright and E. Maneva, �Lossy source encoding via message-passing and decimation
over generalized codewords of ldgm codes,� in Proc. International Symposium on Information
Theory ISIT, Sep. 4�9, 2005, pp. 1493�1497.

[131] E. Martinian and M. Wainwright, �Low density codes achieve the rate-distortion bound,� in
Proc. Data Compression Conference DCC, Mar. 28�30, 2006, pp. 153�162.

[132] E. Martinian and M. J. Wainwright, �Low-density constructions for lossy compression, binning,
and coding with side information,� in Proc. IEEE Information Theory Workshop ITW, Mar.
13�17, 2006, pp. 263�264.

[133] M. J. Wainwright and E. Martinian, �Low-density graph codes that are optimal for binning
and coding with side information,� IEEE Transactions on Information Theory, vol. 55, no. 3,
pp. 1061�1079, Mar. 2009.

[134] R. Karp, M. Luby, and A. Shokrollahi, �Finite length analysis of lt codes,� in Proc. Interna-
tional Symposium on Information Theory ISIT, Jun. 27�Jul. 2, 2004, p. 39.

[135] E. Maneva and A. Shokrollahi, �New model for rigorous analysis of lt-codes,� in Proc. IEEE
International Symposium on Information Theory ISIT, Jul. 9�14, 2006, pp. 2677�2679.

[136] A. Amraoui, A. Montanari, and R. Urbanke, �How to �nd good �nite-length codes: from art
towards science,� Euro. Trans. Telecomms., vol. 18, no. 5, pp. 491�508, 2007.

[137] S. Sarvotham, D. Baron, and R. Baraniuk, �Compressed sensing reconstruction via belief
propagation,� Rice University, Houston, TX� Tech. Rep. TREE0601, 2006.

[138] S. Ji, Y. Xue, and L. Carin, �Bayesian compressive sensing,� IEEE Transactions on Signal
Processing, vol. 56, no. 6, pp. 2346�2356, Jun. 2008.

[139] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, �Growth codes: maximizing sensor
network data persistence,� in Proc. ACM SIGCOMM. New York, NY, USA: ACM, 2006, pp.
255�266.

[140] A. Oka and L. Lampe, �Data extraction from wireless sensor networks using fountain codes,� in
Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMPSAP), December 2007.

[141] D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci, �A packet-centric
approach to distributed rateless coding in wireless sensor networks,� in Proc. 6th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks SECON '09, Jun. 22�26, 2009, pp. 1�8.

172

[142] J. Lenstra, A. Rinnooy Kan, and A. Schrijver, Eds., History of Mathematical Programming:
a collection of personal reminiscences. North-Holland, 1991.

[143] M. Wood and G. Dantzig, �Programming of interdependent activities i - general discussion,�
Econometrica, vol. 17, pp. 193�199, 1949.

[144] G. Dantzig, �Programming of interdependent activities ii - mathematical model,� Economet-
rica, vol. 17, pp. 200�211, 1949.

[145] R. Vanderbei, Linear programming: foundations and extensions. Springer (2nd Ed.), 2001.

173

