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Abstract

Despite the fundamental nature of the Poisson process in the theory and application
of stochastic processes, and its attractive generalizations (e.g. Cox process), few
tractable nonparametric modeling approaches exist, especially in multiple dimen-
sions. In this paper we develop a new Reproducing Kernel Hilbert Space (RKHS)
formulation for the inhomogeneous Poisson process. We model the square root of
the intensity as an RKHS function. The modeling challenge is that the usual repre-
senter theorem arguments no longer apply due to the form of the inhomogeneous
Poisson process likelihood. However, we prove that the representer theorem does
hold in an appropriately transformed RKHS, guaranteeing that the optimization of
the penalized likelihood can be cast as a finite-dimensional problem. The resulting
approach is simple to implement, scales to multiple dimensions and can readily be
extended to handle large-scale datasets.

1 Introduction

Poisson processes are ubiquitous in statistical science, with a long history spanning both theory
(e.g. [16]) and applications (e.g. [10]), especially in the spatial statistics and time series literature.
Despite their ubiquity, fundamental questions in their application to real datasets remain open. Namely,
scalable nonparametric models for intensity functions of inhomogeneous Poisson processes are not
well understood, especially in multiple dimensions since the standard approaches are akin to density
estimation. In this contribution, we propose a step towards such scalable nonparametric modeling
and introduce a new Reproducing Kernel Hilbert Space (RKHS) formulation for inhomogeneous
Poisson process modeling, which is based on the Empirical Risk Minimization (ERM) framework.
We model the square root of the intensity as an RKHS function and consider a risk functional given
by a penalized version of the inhomogeneous Poisson process likelihood. While standard representer
theorem arguments do not apply directly due to the form of the likelihood—as a counting process,
a Poisson process is fundamentally different from standard probability distributions because the
observation that no points occur in some region is just as important as the locations of the points
that do occur, and thus the likelihood depends not only on the evaluations of the intensity at the
observed points, but also on its integral across the domain of interest. Nevertheless, we prove a
version of the representer theorem in an appropriately adjusted RKHS. The adjusted RKHS coincides
with the original RKHS as a space of functions but has a different inner product structure. This
allows us to cast the estimation problem as an optimization over a finite-dimensional subspace of
the adjusted RKHS. The derived method is demonstrated to give better performance than a naïve
unadjusted RKHS method which resorts to an optimization over a subspace without representer
theorem guarantees. We describe cases where adjusted RKHS can be described with explicit Mercer
expansions as well as numerical approximations where Mercer expansions are not available. We
observe strong performance of the proposed method on a variety of synthetic, environmental and
bioinformatics data.



2 Background and Related Work

2.1 Poisson process

We briefly state relevant definitions for point processes over domains S ⊂ RD, following [7]. For
Lebesgue measurable subsets T ⊂ S, N(T ) denotes the number of events in T ⊂ S. N(·) is
a stochastic process characterizing the point process. Our focus is on providing a nonparametric
estimator for the first-order intensity of a point process, which is defined as:

λ(s) = lim
|ds|→0

E[N(ds))]/|ds| (1)

The inhomogeneous Poisson process is driven solely by the intensity function λ(·):

N(T ) ∼ Poisson(

∫
T

λ(x)dx) (2)

In the homogeneous Poisson process, λ(x) = λ is constant, so the number of points in any region T
simply depends on the volume of T , which we denote |T |:

N(T ) ∼ Poisson(λ|T |) (3)

Assuming that λ(x) is known (either deterministically parameterized with known parameters or if
we are in a hierarchical model like the Cox process, then conditional on a realization), we have
the following likelihood function for a set of N = N(S) points x1, . . . , xN observed over a fixed
window S:

L(x1, . . . , xN |λ(x)) =

N∏
i=1

λ(xi)exp
(
−
∫
S

λ(x)dx

)
(4)

2.2 Reproducing Kernel Hilbert Spaces

Given a non-empty domain S and a positive definite kernel function k : S × S → R, there
exists a unique reproducing kernel Hilbert space (RKHS) Hk. RKHS is a space of functions
f : S → R where evaluation is a continuous functional, and can thus be represented by an inner
product f(x) = 〈f, k(x, ·)〉Hk

for all f ∈ Hk, x ∈ S (reproducing property). While Hk is in most
interesting cases an infinite-dimensional space of functions, due to the classical representer theorem
[15], [24, Section 4.2], optimization overHk is typically a tractable finite-dimensional problem. In
particular, if we have a set of N observations x1, . . . , xN , xi ∈ S and consider the problem

min
f∈Hk

{R (f(x1), . . . , f(xN )) + Ω (‖f‖Hk
)} . (5)

where R (f(x1), . . . , f(xN )) depends on f through its evaluations on the set of observations only,
and Ω is a non-decreasing function of the RKHS norm of f , there exists a solution to Eq. (5) of
the form f∗(·) =

∑N
i=1 αik(xi, ·), and the optimization can thus be cast in terms of α ∈ RN . This

formulation is widely used in the framework of regularized Empirical Risk Minimization (ERM)
for supervised learning, where R (f(x1), . . . , f(xN )) = 1

N

∑N
i=1 L(f(xi), yi) is the empirical risk

corresponding to a loss function L.

If domain S is compact and kernel k is continuous, one can assign to k its integral kernel operator
Tk : L2(S) → L2(S), given by Tkg =

∫
S
k(x, ·)g(x)dx, which is positive, self-adjoint and

compact. There thus exists an orthonormal set of eigenfunctions {ej}∞j=1 of Tk, and the corresponding
eigenvalues {ηj}∞j=1. This spectral decomposition of Tk leads to Mercer’s representation of kernel
function k [24, Section 2.2]:

k(x, x′) =

∞∑
j=1

ηjej(x)ej(x
′), x, x′ ∈ S (6)

with uniform convergence on S × S. Any function f ∈ Hk can then be written as f =
∑
j bjej

where ‖f‖2Hk
=
∑
j b

2
j/ηj <∞.
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2.3 Related work

The classic approach to nonparametric intensity estimation is based on smoothing kernels [22, 9] and
has a form closely related to the kernel density estimator:

λ̂(x) =

N∑
i=1

k(xi − x) (7)

where k is a smoothing kernel, that is, any bounded function integrating to 1. Early work in this area
focused on edge-corrections and methods for choosing the bandwidth [9, 5, 6]. Connections with
RKHS have been considered by, for example, [4] who use a maximum penalized likelihood approach
based on Hilbert spaces to estimate the intensity of a Poisson process. There is long literature on
maximum penalized likelihood approaches to density estimation, which also contain interesting
connections with RKHS, e.g. [25].

Much recent work on estimating intensities for point processes has focused on Bayesian approaches
to modeling Cox processes. The log Gaussian Cox Process [20] and related parameterizations of Cox
(doubly stochastic) Poisson processes in terms of Gaussian processes have been proposed, along with
Monte Carlo [1, 10, 26], Laplace approximate [14, 8, 12] and variational [18, 17] inference schemes.

3 Proposed Method and Kernel Transformation

Let S be a compact domain of observations, e.g. the interval [0, T ] for a time series dataset observed
between times 0 and T . Let k : S × S → R be a continuous positive definite kernel, and Hk
its corresponding RKHS of functions f : S → R. We wish to parameterize the intensity of an
inhomogeneous Poisson process using a function f ∈ Hk. We define our intensity as:

λ(x) := af2(x), x ∈ S. (8)
where a > 0 is a scale parameter and we have squared f to ensure that the intensity is non-negative
on S. The exact rationale for including a will become clear later—the intuition is that it allows us to
decouple the overall scale of the intensity (which depends on the units of the problem, e.g. number of
points per hour versus number of points per year) from the penalty on the complexity of f which
arises from the classical regularized Empirical Risk Minimization framework (and which should
depend only on how complex, i.e. “wiggly” f is).

We use the inhomogeneous Poisson process likelihood from Eq. (4) to write the log-likelihood of a
Poisson process corresponding to the observations {x1, . . . , xN}, for xi ∈ S, and intensity λ(·):

`(x1, . . . , xN |λ) =

N∑
i=1

log(λ(xi))−
∫
S

λ(x)dx (9)

We will consider the problem of minimization of the penalized negative log likelihood, where the
regularization term corresponds to the squared Hilbert space norm of f in parametrization Eq. (8):

min
f∈Hk

{
−

N∑
i=1

log(af2(xi)) + a

∫
S

f2(x)dx+ γ‖f‖2Hk

}
. (10)

This objective is akin to a classical regularized empirical risk minimization framework over RKHS:
there is a term that depends on evaluations of f at the observed points x1, . . . , xN as well as a term
corresponding to the RKHS norm. However, the representer theorem does not apply directly to
Eq. (10), since there is also a term given by the L2-norm of f , and so there is no guarantee that
there is a solution of Eq. (10) that lies in span{k(xi, ·)}. We will show that Eq. (10) fortunately still
reduces to a finite-dimensional optimization problem corresponding to a different kernel function k̃
which we define below.

Using the Mercer expansion of k in Eq. (6), we can write the objective Eq. (10) as follows:

J [f ] = −
N∑
i=1

log(af2(xi)) + a‖f‖2L2(S)
+ γ‖f‖2Hk

(11)

= −
N∑
i=1

log(af2(xi)) + a

∞∑
j=1

b2j + γ

∞∑
j=1

b2j
ηj
. (12)
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The last two terms can now be merged together, giving

a

∞∑
j=1

b2j + γ

∞∑
j=1

b2j
ej

=

∞∑
j=1

b2j
aηj + γ

ηj
=

∞∑
j=1

b2j
ηj(aηj + γ)−1

. (13)

Now, if we define kernel k̃ to be the kernel corresponding to the integral operator Tk̃ := Tk(aTk +

γI)−1, i.e., k̃ is given by:

k̃(x, x′) =

∞∑
j=1

ηj
aηj + γ

ej(x)ej(x
′), x, x′ ∈ S, (14)

we see that:

J [f ] = −
N∑
i=1

log(af2(xi)) + ‖f‖2Hk̃
. (15)

We are now ready to state the representer theorem in terms of kernel k̃.

Theorem 1. There exists a solution of minf∈Hk

{
−
∑N
i=1 log(af2(xi)) + a

∫
S
f2(x)dx+ γ‖f‖2Hk

}
for observations x1, . . . , xN , which takes the form f∗(·) =

∑N
i=1 αik̃(xi, ·).

Proof. Since
∑
j

b2j
ηj
<∞ if and only if

∑
j

b2j
ηj(aηj+γ)−1 <∞, i.e. f ∈ Hk ⇐⇒ f ∈ Hk̃, we have

that the two spaces correspond to exactly the same set of functions. Optimization overHk is therefore
equivalent to optimization over Hk̃. The proof now follows by applying the classical representer
theorem in k̃ to the representation of the objective function in Eq. (15). For completeness, this is
given in Appendix C.

Remark 1. The notions of the inner product in Hk and Hk̃ are different and thus in general
span{k(xi, ·)} 6= span{k̃(xi, ·)}.
Remark 2. Notice that unlike in a standard ERM setting, γ = 0 does not recover the unpenalized
risk, because γ appears in k̃. Notice further that the overall scale parameter a also appears in k̃. This
is important in practice, because it allows us to decouple the scale of the intensity (which is controlled
by a) from its complexity (which is controlled by γ).

Illustration. The eigenspectrum of k̃ where k is a squared exponential kernel is shown be-
low for various settings of a and γ. Reminiscent of spectral filtering, we see that depending
on the settings of a and γ, eigenvalues are shrunk or inflated as compared to k(x, x′) which
is shown in black. On the right, the values of k(0, x) are shown for the same set of kernels.
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4 Computation of k̃

In this section, we consider first the case in which an explicit Mercer expansion is known, and
then we consider the more commonly encountered situation in which we only have access to the
parametric form of the kernel k(x, x′), so we must approximate k̃. We show experimentally that our
approximation is very accurate by considering the Sobolev kernel, which can be expressed in both
ways.
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4.1 Explicit Mercer Expansion

We start by assuming that we have a kernel k with an explicit Mercer expansion, so we have
eigenvectors {ej(x)}j∈J and eigenvalues {ηj}j∈J :

k(x, x′) =
∑
j∈J

ηjej(x)ej(x
′), (16)

with an at most countable index set J . Given a and γ we can calculate:

k̃(x, x′) =
∑
j∈J

ηj
aηj + γ

ej(x)ej(x
′) (17)

up to a desired precision as informed by the spectral decay in {ηj}j∈J . We consider a kernel on the
Sobolev space on [0, 1] with a periodic boundary condition, proposed by Wahba in [27, chapter 2]
and recently used in [2]:

k(x, x′) = 1 +

∞∑
j=1

2 cos (2πj (x− x′))
(2πj)2s

(18)

where s = 1, 2, . . . denotes the order of the Sobolev space (larger s means existence of a larger
number of square-integrable derivatives). We will return to this kernel in the experiments and use it
to model point process data on periodic domains, including dihedral angles in protein structures. The
Mercer expansion is given by:

k(x, x′) =
∑
j∈Z

ηjej(x)ej(x
′) (19)

where the eigenfunctions are e0(x) = 1 and ej(x) =
√

2 cos (2πjx), e−j(x) =
√

2 sin (2πjx) for
j = {1, 2, . . .} with the corresponding eigenvalues η0 = 1, ηj = η−j = (2πj)−2s. Further details
are in the Appendix in Section B.1. We derive:

k̃(x, x′) =
1

1 + c
+

∞∑
j=1

2 cos (2πj (x− x′))
a+ γ(2πj)2s

. (20)

We discuss a Mercer expansion of the squared exponential kernel in the Appendix in Section B.2
and extensions of the Mercer expansion to multiple dimensions using a tensor product formulation
in the Appendix in Section B.4. Although not practical for large datasets, we can use the Mercer
expansion with summing terms up to j > 50 (for which the error is less than 10−5) to evaluate the
further approximations where Mercer expansion is not available, which we develop next.

4.2 Numerical Approximation

We propose an approximation to k̃ given access only to a kernel k for which we do not have an
explicit Mercer expansion with respect to Lebesgue measure. We only assume that we can form
Gram matrices corresponding to k and calculate their eigenvectors and eigenvalues. As a side benefit,
this representation will also enable scalable computations through Toeplitz / Kronecker algebra or
primal reduced rank approximations.

Let us first consider the one-dimensional case and construct a uniform grid u = (u1, . . . , um). Then
the integral kernel operator Tk can be approximated with the (scaled) kernel matrix 1

mKuu : Rm →
Rm, where [Kuu]ij = k(ui, uj), and thus K̃uu is approximately Kuu

(
a
mKuu + γI

)−1
. However,

we are not primarily interested in evaluations of k̃ on this grid, but on the observations x1, . . . , xN .
Simply adding the observations into the kernel matrix is not an option however, as it changes the base
measure with respect to which the integral kernel operator is to be computed (Lebesgue measure
on [0, T ]). Thus, we consider the relationship between the eigendecomposition of Kuu and the
eigenvalues and eigenfunctions of the integral kernel operator Tk.

Let λui , e
u
i be the eigenvalue/eigenvector pairs of the matrix Kuu, i.e., its eigendecomposition is

given by Kuu = QΛQ> =
∑m
i=1 λ

u
i e
u
i (eui )>. Then the estimates of the eigenvalues/eigenfunctions
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of the integral operator Tk are given by the Nyström method (see [23, Section 4.3] and references
therein, especially [3]):

η̂i =
1

m
λui , êi(x) =

√
m

λui
Kxue

u
i , (21)

with Kxu = [k(x, u1), . . . , k(x, um)], leading to:̂̃
k(x, x′) =

m∑
i=1

η̂i
aη̂i + γ

êi(x)êi(x
′) =

m∑
i=1

1
mλ

u
i

a
mλ

u
i + γ

· m

(λui )2
Kxue

u
i (eui )>Kux′ (22)

= Kxu

{
m∑
i=1

1(
a
mλ

u
i + γ

)
λui

eui (eui )>

}
Kux′ . (23)

For an estimate of the whole matrix K̃xx we thus havễKxx = Kxu

{
m∑
i=1

1(
a
mλ

u
i + γ

)
λui

eui (eui )>

}
Kux = KxuQ

( a
m

Λ2 + γΛ
)−1

Q>Kux. (24)

The above is reminiscent of the Nyström method [28] proposed for speeding up Gaussian process
regression. A reduced rank representation for Eq. (24) is straightforward by considering only the
top p eigenvalues/eigenvectors of Kuu. Computational cost is thus O(m3 +N2m). Furthermore, a
primal representation with the features corresponding to kernel k̃ is readily available and is given by

φ̃(x) =
( a
m

Λ2 + γΛ
)−1/2

Q>Kux, (25)

which allows linear computational cost in the number N of observations.

For D > 1 dimensions, one can exploit Kronecker and Toeplitz algebra approaches. Assuming that
the Kuu matrix corresponds to a Cartesian product structure of the one-dimensional grids of size
m, one can write Kuu = K1 ⊗K2 · · · ⊗KD. Thus, the eigenspectrum can be efficiently calculated
by eigendecomposing each of the smaller m×m matrices K1, . . . ,KD and then applying standard
Kronecker algebra, thereby avoiding ever having to form the prohibitively large mD ×mD matrix
Kuu. For regular grids and stationary kernels, each small matrix will be Toeplitz structured, yielding
further efficiency gains [29]. The resulting approach therefore scales linearly in dimension D.

We compared the exact calculation of K̃uu with s = 1, a = 10, and γ = .5 to our approximate
calculation. For illustration we tried a coarse grid of size 10 on the unit interval (left) to a finer
grid of size 100. The RMSE was 2E-3 for the coarse grid and 1.6E-5 for the fine grid, as shown
in the Appendix in Figure A4. In the same figure we compared the exact calculation of K̃xx with
s = 1, a = 10, and γ = .5 to our Nyström-based approximation, where x1, . . . , x400 ∼ Beta(.5, .5)
distribution. The RMSE was 0.98E-3. A low-rank approximation using only the top 5 eigenvalues
gives the RMSE of 1.6E-2.

5 Inference

The penalized risk can be readily minimized with gradient descent. Let α = [α1, . . . , αN ]> and K̃ be
the Gram matrix corresponding to k̃ such that K̃ij = k̃(xi, xj). Then [f(x1), . . . , f(xN )]> = K̃α
and the gradient of the objective function J from (15) is calculated as follows, where log(·) is
understood to be applied element-wise to a vector.

∇αJ = −∇α
∑
i

log(af2(xi)) + γ∇α‖f‖2Hk̃
= −∇α

∑
i

log(a(
∑
j

k̃ijαj)
2) + γ∇αα>K̃α

= −
∑
i

2a(
∑
j k̃ijαj)∇α

∑
j k̃ijαj

a(
∑
j k̃ijαj)

2
+ 2γK̃α = −

∑
i

2K̃·i∑
j k̃ijαj

+ 2γK̃α

= −2
∑
i

(K̃·i./(K̃α)) + 2γK̃α

where ./ denotes element-wise division. We use L-BFGS-B to maximize R. Computing K̃ requires
O(N2) time and memory, and each gradient and likelihood computation requires matrix-vector
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multiplications which are also O(N2). Overall, the running time is O(qN2) for q iterations of the
gradient descent method, where q is usually very small in practice.

6 Naïve RKHS model

In this section, we compare the proposed approach, which uses the representer theorem in the trans-
formed kernel k̃, to the naïve one, where a solution to Eq. (10) of the form f(·) =

∑N
j=1 αjk(xj , ·)

is sought even though the representer theorem in k need not hold. Despite being theoretically subopti-
mal, this is a natural model to consider, and it might perform well in practice. The corresponding
optimization problem is:

min
f∈span{k(xi,·)}

{
−

N∑
i=1

log(af2(xi)) + a

∫
S

f2(x)dx+ γ‖f‖2Hk

}
. (26)

While the first and the last term are straightforward to calculate for any f(·) =
∑
j αjk(xj , ·),∫

S
f2(x)dx needs to be estimated. As before, we construct a uniform grid of fineness h, u =

(u1, . . . , un) covering the domain. Then∫
S

f2(u)du =

∫
S

(
α>Kxu

)2
du = α>

{∫
S

KxuKuxdu

}
α ≈ hα>KxuKuxα, (27)

and the optimization problem reads:

min
α∈RN

{
−

N∑
i=1

log(a(α>Kxxi
)2) + α> (ahKxuKux + γKxx)α

}
. (28)

We carried out a small simulation study using simulated intensities drawn fromHk where k was the
squared exponential (SE) kernel in order to compare the performance of the correct model using k̃ as
previously developed to the naïve model discussed above. In both cases we used crossvalidation to
tune the hyperparameters on the same synthetic dataset. For testing, we calculated the RMSE of each
method in reconstructing the true underlying intensity. In 97 out of 100 repetitions, the correct model
had a smaller average test log-likelihood than the incorrect model (paired t-test p-value < 0.001). We
report further comparisons in the next section.

7 Experiments

Synthetic Example. We generated a synthetic intensity using the Mercer expansion of a SE kernel
with lengthscale 0.5, producing a random linear combination of 64 basis functions, weighted with
iid draws α ∼ N (0, 1). In Figure 1 we compare ground truth to estimates made with: our RKHS
method with SE kernel, the naïve RKHS approach with SE kernel, a log-Gaussian Cox process
method [13], and classical kernel smoothing with bandwidth selected by crossvalidation (bw.ucv in
R). The RMSE of our method was 34 which compared to 75 for kernel intensity estimation, 75 for
the Cox process, and 86 for the naïve RKHS approach.

Environmental datasets. Next we demonstrate our method on a collection of two-dimensional
environmental datasets giving the locations of trees. The datasets were obtained from the R package
spatstat. For illustration, we visualize the locations and intensity estimates for black oak trees
in Lansing, Michigan in Figure 2, where we calculated the intensity using various approaches: our
proposed method with squared exponential kernel, our naïve RKHS method with squared exponential
kernel, and classical kernel intensity estimation, with a crossvalidated bandwidth and edge correction.
We used cross-validation to tune our methods and we provide cross-validated likelihoods in Table 1.

Dihedral angles as point process on a torus. Finally, we consider a novel application of Poisson
process estimation, suited to our periodic Sobolev kernel. The tensor product construction in two
dimensions is appropriate for data observed on a torus. An example from protein bioinformatics is
shown in Figure A3 using data included with the R package MDplot, visualizing the dihedral torsion
angles [ψ, φ] of amino acids in proteins [21, 19]. Classically, datasets of observed angle pairs have
been binned using two-dimensional histograms. We propose to treat a set of observed angles as an
inhomogeneous Poisson process, enabling intensity estimation as shown.
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Figure 1: A synthetic dataset, comparing our RKHS method, the naïve model, a Cox process model,
and kernel smoothing. The RMSE of the model using k̃ was significantly better than the competing
approaches, as described in text.

Dataset Kernel intensity estimation Naïve approach Our approach with k̃
Lansing: Black oak (n = 135) -236 -233 -232

Hickory (n = 703) -1759 -1748 -1752
Maple (n = 514) -1243 -1237 -1227
Misc (n = 105) -172 -173 -171

Red oak (n = 346) -722 -727 -727
White oak (n = 448) -994 -990 -996

Spruces in Saxonia (n = 134) -213 -213 -213
Waka national park (n = 504) -1136 -1139 -1139

New Zealand (n = 86) -117 -118 -118
Swedish pines (n = 71) -91 -91 -91

Table 1: Various datasets from the R package spatstat give the locations of trees. We compared
kernel intensity estimation with bandwidth selected by crossvalidation to the naïve RKHS approach
and our proposed approach. Bolded results were significant at p < 0.01 with paired two-sample tests.

(a) SE kernel: RKHS (b) SE kernel: naïve (c) Kernel smoothing

Figure 2: Location of black oak trees in Lansing michigan smoothed with various approaches. As
shown in Table 1, none of the approaches were significantly better than the others on this dataset.

8 Conclusion

We presented a novel approach to inhomogeneous Poisson process intensity estimation using a
Representor Theorem formulation in an appropriately transformed RKHS, providing a computation-
ally tractable approach giving comparable performance to existing methods on low dimensionality
datasets. In future work, we will consider marked Poisson processes and other more complex point
process models, as well as Bayesian extensions akin to Cox process modeling.
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A Supplementary results
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Figure A3: Standard Ramachandran plot (left) based on a two-dimensional histogram versus our
proposed Ramachandran plot based on an intensity estimate with a two-dimensional Sobolev kernel

B Kernels with Explicit Mercer Expansions

B.1 Sobolev space on [0, 1] with a periodic boundary condition

We consider domain S = [0, 1]. The kernel is given by:

k(x, y) = 1 +

∞∑
m=1

2 cos (2πm (x− y))

(2πm)2s

= 1 +

∞∑
m=1

2

(2πm)2s
[cos (2πmx) cos (2πmy) + sin (2πmx) sin (2πmy)] ,

= 1 +
(−1)s−1

(2s)!
B2s({x− y}),

where s = 1, 2, . . . denotes the order of the Sobolev space and B2s({x − y}) is the Bernoulli
polynomial of degree 2s applied to the fractional part of x − y. The corresponding RKHS is the
space of functions on [0, 1] with absolutely continuous f, f ′, . . . , f (s−1) and square integrable f (s)

satisfying a periodic boundary condition f (l)(0) = f (l)(1), l = 0, . . . , s− 1. For more details, see
[27, Chapter 2] Bernoulli polynomials admit a simple form for low degrees. In particular,

B2(t) = t2 − t+
1

6
,

B4(t) = t4 − 2t3 + t2 − 1

30
,

B6(t) = t6 − 3t5 +
5

2
t4 − 1

2
t2 +

1

42
.
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If we consider the Mercer expansion where the underlying measure ρ is uniform on [0, 1]: dρ(x) = dx,
we have ∫ 1

0

2 cos (2πmx) sin (2πm′x) dx = 0∫ 1

0

2 cos (2πmx) cos (2πm′x) dx = δ(m−m′)∫ 1

0

2 sin (2πmx) sin (2πm′x) dx = δ(m−m′).

Thus, the desired Mercer expansion k(x, y) =
∑
m∈Z ηmem(x)em(y) has eigenfunctions e0(x) = 1

and for m = {1, 2, . . .}, em(x) =
√

2 cos (2πmx), e−m(x) =
√

2 sin (2πmx) and corresponding
eigenvalues η0 = 1, ηm = η−m = (2πm)−2s.

• k̃(x, y) is the kernel of Tk(Tk + cI)−1 and has form

k̃(x, y) =
∑
m∈Z

ηm
ηm + c

em(x)em(y)

=
1

1 + c
+

∞∑
m=1

2 cos (2πm (x− y))

1 + c(2πm)2s

• To compute
∫ 1

0
f2(x)dx for f =

∑
i αik̃(·, xi) we have∫ 1

0

f2(x)dx =
∑
i,j

αiαj

∫ 1

0

k̃(xi, u)k̃(u, xj)du

=
∑
i,j

αiαj
∑
m,m′

ηmη
′
m

(ηm + c)(ηm′ + c)
em(xi)em′(xj)

∫ 1

0

em(u)em′(u)du

=
∑
i,j

αiαj
∑
m

η2m
(ηm + c)2

em(xi)em(xj)

= α>R̃α,

where kernel matrix R̃ is computed using kernel r̃ of T 2
k (Tk + cI)−2, i.e.

r̃(x, y) =
∑
m∈Z

η2m
(ηm + c)2

em(x)em(y)

=
1

(1 + c)2
+

∞∑
m=1

2 cos (2πm (x− y))

(1 + c(2πm)2s)2
.

• To generate a function f ∈ Hk of unit norm ‖f‖Hk
= 1, one takes

f(x) = a0 +
√

2

M∑
m=1

(am cos(2πmx) + a−m sin(2πmx)) , (29)

for which the norm is given by

‖f‖2Hk
= a20 +

M∑
m=1

(a2m + a2−m)(2πm)2s. (30)

Thus we can simply generate z = (z−M , . . . , z0, . . . , zM ) ∼ N (0, I2M+1), set z̃ = z/‖z‖
and then a0 = z̃0, am = z̃m(2π|m|)−s, for m 6= 0.

B.2 Squared exponential kernel

A Mercer expansion for the squared exponential kernel was proposed in [30] and refined in [11].
However, this expansion is with respect to a Gaussian measure on R, i.e., it consists of eigenfunctions
which form an orthonormal set in L2(R, ν) where ν = N (0, `2I). The formalism can therefore be
used to estimate Poisson intensity functions with respect to such Gaussian measure. In the classical
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framework, where the intensity is with respect to a Lebesgue measure, numerical approximations of
Mercer expansion, as described in Section 4.2 are needed. Following the exposition in [23, section
4.3.1] and the relevant errata1 we parameterize the kernel as:

k(x, x′) = exp(−‖x− x
′‖2

2σ2
) (31)

The Mercer expansion with respect to ν = N (0, `2I) then has the following eigenvalues:

ηi =

√
2a

A
Bi (32)

And eigenfunctions:

ei(x) =
1√√
a/c 2ii!

exp(−(c− a)x2)Hi(
√

2cx) (33)

where Hi is the i-th order (physicist’s) Hermite polynomial, a = 1
4σ2 , b = 1

2`2 , c =
√
a2 + 2ab,

A = a+ b+ c, and B = b/A. Thus we have the following eigenvalues for k̃:

η̃i =
ηi

aηi + γ
=

1

a+ γ
√

A
2aB

−i
(34)

while the eigenfunctions remain the same.

B.3 Brownian Bridge kernel

This is the kernel

k(x, y) = min(x, y)− xy =

∞∑
m=1

2 sin(πmx) sin(πmy)

π2m2
,

with

ηm =
1

π2m2
, em(x) =

√
2 sin (πmx) , m = 1, 2, . . . . (35)

Thus

k̃(x, y) =

∞∑
m=1

ηm
ηm + c

em(x)em(y)

=

∞∑
m=1

2 sin(πmx) sin(πmy)

1 + cπ2m2

B.4 Extending the Mercer expansion to multiple dimensions

The extension of any kernel to higher dimensions can be constructed by considering tensor product
spaces: Hk1⊗k2 (where k1 and k2 could potentially be different kernels with different hyperparame-
ters). If k1 has eigenvalues ηi and eigenfunctions ei and k2 has eigenvalues δj and eigenfunctions
fj , then the eigenvalues of the product space are then given by the Cartesian product ηiδj ,∀i, j,
and similarly the eigenfunctions are given by ei(x)fj(y). Our regularized kernel has the following
Mercer expansion:

k̃1 ⊗ k2((x, y), (x′, y′)) =
∑
ij

ηiδj
aηiδj + γ

ei(x)ei(x
′)fj(y)fj(y

′) (36)

Notice that k̃1 ⊗ k2 is the kernel corresponding to the integral operator (Tk1⊗Tk2)(aTk1⊗Tk2+γI)−1

which is different than k̃1 ⊗ k̃2.

1http://www.gaussianprocess.org/gpml/errata.html
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C Proof of the Representer Theorem

We decompose f ∈ Hk̃ as the sum of two functions:

f(·) =

N∑
j=1

αj k̃(xj , ·) + v (37)

where v is orthogonal to the span of {k̃(xj , ·)}j . We prove that the first term in the objective J [f ]

given in Eq. (15), −
∑N
i=1 log(af2(xi)), is independent of v. It depends on f only through the

evaluations f(xi) for all i. Using the reproducing property we have:

f(xi) = 〈f, k̃(xi, ·)〉 =
∑
j

αj k̃(xj , xi) + 〈v, k̃(xi, ·)〉 =
∑
j

αj k̃(xj , xi) (38)

where the last step is by orthogonality. Next we substitute into the regularization term:

γ‖
∑
j

αj k̃(xj , ·) + v‖2Hk̃
= γ‖

∑
j

αj k̃(xj , ·)‖2Hk̃
+ ‖v‖2Hk̃

≥ γ‖
∑
j

αj k̃(xj , ·)‖2Hk̃
. (39)

Thus, the choice of v has no effect on the first term in J [f ] and a non-zero v can only increase the
second term ‖f‖2Hk̃

, so we conclude that v = 0 and that f∗ =
∑N
j=1 αj k̃(xj , ·) is the minimizer.

D Numerical evaluation of kernel approximations

Here we present an evaluation of the numerical approximation to k̃ described in 4.2 on the case of
the Sobolev kernel where Mercer expansion is also available so that truncated Mercer expansion
representation of k̃ can be treated as a ground truth. As Figure A4, demonstrates, good approximation
is possible with a fairly coarse grid u = (u1, . . . , um) as well as with a low-rank approximation.

0.2 0.4 0.6 0.8

0.
05

0.
10

0.
15

0.
20

(a)

ke
rn

el
 v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

(b)

ke
rn

el
 v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

(c)

ke
rn

el
 v

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

(d)

ke
rn

el
 v

al
ue

Figure A4: We compared the exact calculation of K̃uu with s = 1, a = 10, and γ = .5 to our
approximate calculation. For illustration we tried a coarse grid of size 10 on the unit interval (top
left) to a finer grid of size 100 (top right). The RMSE was 2E-3 for the coarse grid and 1.6E-5 for
the fine grid. We compare the exact calculation of K̃xx with s = 1, a = 10, and γ = .5 to our
Nyström-based approximation, where x1, . . . , x400 ∼ Beta(.5, .5) distribution (bottom left). The
RMSE was 0.98E-3. A low-rank approximation using only the top 5 eigenvalues gives the RMSE of
1.6E-2 (bottom right).
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