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Abstract

Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD),
the resulting distance between distributions, are useful tools for fully nonparametric
two-sample testing and learning on distributions. However, it is rarely that all
possible differences between samples are of interest – discovered differences
can be due to different types of measurement noise, data collection artefacts or
other irrelevant sources of variability. We propose distances between distributions
which encode invariance to additive symmetric noise, aimed at testing whether
the assumed true underlying processes differ. Moreover, we construct invariant
features of distributions, leading to learning algorithms robust to the impairment of
the input distributions with symmetric additive noise.

1 Introduction

There are many sources of variability in data, and not all of them are pertinent to the questions that a
data analyst may be interested in. Consider, for example, a nonparametric two-sample testing problem,
recently attracting significant research interest, especially in the context of kernel embeddings of
distributions [2, 5, 7]. We observe samples {X1j}N1

j=1 and {X2j}N2
j=1 from two data generating

processes P1 and P2, respectively, and would like to test the null hypothesis that P1 = P2 without
making any parametric assumptions on these distributions. With a large sample-size, the minutiae
of the two data generating processes are uncovered (e.g. slightly different calibration of the data
collecting equipment, different numerical precision), and we ultimately reject the null hypothesis,
even if the sources of variation across the two samples may be irrelevant for the analysis. Similarly, we
may be interested in learning on distributions [14, 23, 24], where the appropriate level of granularity
in the data is distributional. For example, each label yi in supervised learning is associated to a whole
bag of observations Bi = {Xij}Ni

j=1 – assumed to come from a probability distribution Pi, or we
may be interested in clustering such bags of observations. Again, nonparametric distances used in
such contexts to facilitate a learning algorithm on distributions, such as Maximum Mean Discrepancy
(MMD) [5], can be sensitive to irrelevant sources of variation and may lead to suboptimal or even
misleading results, in which case building predictors which are invariant to noise is of interest.

While it may be tempting to revert back to a parametric setup and work with simple, easy to interpret
models, we argue that a different approach is possible: we stay within a nonparametric framework,
exploit the irregular and complicated nature of real life distributions and encode invariances to sources
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of variation assumed to be irrelevant. In this contribution, we focus on invariances to symmetric
additive noise on each of the data generating distributions. Namely, assume that the i-th sample
{Xij}Ni

j=1 we observe does not follow the distribution Pi of interest but instead its convolution Pi ?Ei
with some unknown noise distributions Ei assumed to be symmetric about 0 (we also require that it
has a positive characteristic function). We would like to assess the differences between Pi and Pi′
while allowing Ei and Ei′ to differ in an arbitrary way. We investigate two approaches to this problem:
(1) measuring the degree of asymmetry of the paired differences {Xij −Xi′j}, and (2) comparing
the phase functions of the corresponding samples. While the first approach is simpler and presents
a sensible solution for the two-sample testing problem, we demonstrate that phase functions give a
much better gauge on the relative comparisons between bags of observations, as required for learning
on distributions.

The paper is outlined as follows. In section 2, we provide an overview of the background. In section 3,
we provide details of the construction and implementation of phase features. In section 4, we discuss
the approach based on asymmetry in paired differences for two sample testing with invariances.
Section 5 provides experiments on synthetic and real data, before concluding in section 6.

2 Background and Setup

We will say that a random vector E on Rd is a symmetric positive definite (SPD) component if its
characteristic function is positive, i.e. ϕE(ω) = EX∼E

[
exp(iω>E)

]
> 0, ∀ω ∈ Rd. This means

that E is (1) symmetric about zero, i.e. E and −E have the same distribution and (2) if it has a
density, this density must be a positive definite function [20]. Note that many distributions used to
model additive noise, including the spherical zero-mean Gaussian distribution, as well as multivariate
Laplace, Cauchy or Student’s t (but not uniform), are all SPD components.

Following the terminology similar to that of [3], we will say that a random vector X on Rd is
decomposable if its characteristic function can be written as ϕX = ϕX0ϕE , with ϕE > 0. Thus,
if X can be written in the form X = X0 + E, where X0 and E are independent and E is an
SPD noise component, then X is decomposable. We will say that X is indecomposable if it is
not decomposable. In this paper, we will assume that mostly the indecomposable components of
distributions are of interest and will construct tools to directly measure differences between these
indecomposable components, encoding invariance to other sources of variability. The class of Borel
Probability measures on Rd will be denotedM1

+(Rd), while the class of indecomposable probability
measures will be denoted by I(Rd) ⊆M1

+(Rd).

2.1 Kernel Embeddings and Fourier Features

For any positive definite function k : X × X 7→ R, there exists a unique reproducing kernel Hilbert
space (RKHS)Hk of real-valued functions on X . Function k(·, x) is an element ofHk and represents
evaluation at x, i.e. 〈f, k(·, x)〉H = f(x), ∀f ∈ Hk, ∀x ∈ X . The kernel mean embedding
(cf. [15] for a recent review) of a probability measure P is defined by µP = EX∼P [k(·, X)] =∫
X k(·, x)dP (x). The Maximum Mean Discrepancy (MMD) between probability measures P and Q

is then given by ‖µP −µQ‖Hk
. For shift-invariant kernels on Rd, using Bochner’s characterisation of

positive definiteness [26, 6.2], the squared MMD can be written as a weighted L2-distance between
characteristic functions [22, Corollary 4]

‖µP − µQ‖2Hk
=

∫
Rd

|ϕP (ω)− ϕQ (ω)|2 dΛ (ω) , (1)

where Λ is the non-negative spectral measure (inverse Fourier transform) of kernel k as a function of
x− y, while ϕP (ω) and ϕQ(ω) are the characteristic functions of probability measures P and Q.

Bochner’s theorem is also used to construct random Fourier features (RFF) [19] for fast approxi-
mations to kernel methods in order to approximate a pre-specified shift-invariant kernel by a finite
dimensional explicit feature map. If we can draw samples from its spectral measure Λ, we can
approximate k by1 k̃(x, y) = 1

m

∑m
j=1

[
cos(ωTj x) cos(ωTj y) + sin(ωTj x) sin(ωTj y)

]
= 〈φ(x), φ(y)〉R2mwhere

1a complex feature map φ(x) =
√

1
m

[
exp

(
iω>

1 x
)
, . . . , exp

(
iω>

mx
)]

can also be used, but we follow the con-
vention of real-valued Fourier features, since kernels of interest are typically real-valued.
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ω1, . . . , ωm ∼ Λ, giving an explicit map φ(x) :=
√

1
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
. . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]
,

whereby the explicit computation of the kernel matrix is not needed and the computational complexity
is reduced. This also allows computation with the approximate, finite-dimensional embeddings
µ̃P = Φ(P ) = EX∼Pφ(X) ∈ R2m, which can be understood as the evaluations (real and complex
part stacked together) of the characteristic function ϕP at frequencies ω1, . . . , ωm. We will refer to
the approximate embeddings Φ(P ) as Fourier features of distribution P .

2.2 Learning on Distributions

Kernel embeddings can be used for supervised learning on distributions. Assume we have a training
set {Bi, yi}ni=1, where input Bi = {xij}Ni

j=1 is a bag of samples taking values in X , and yi is
a response. Given a kernel k : X × X → R, we first map each Bi to the empirical embedding
µP̂i

= 1
Ni

∑Ni

j=1 k(·, xij) ∈ Hk and then can apply any positive definite kernel onHk as the kernel
on bag inputs, e.g. linear kernel K(Bi, B

′
i) = 〈µP̂i

, µP̂i′
〉Hk

, in order to perform classification [14]
or regression [24]. Approximate kernel embeddings have also been applied in this context [23].

3 Phase Discrepancy and Phase Features

While MMD and kernel embeddings are related to characteristic functions, and indeed the same
connection forms a basis for fast approximations to kernel methods using random Fourier features
[19], the relevant notion in our context is the phase function of a probability measure, recently used
for nonparametric deconvolution by [3]. In this section, we overview this formalism. Based on
the empirical phase functions, we will then derive and investigate hypothesis testing and learning
framework using phase features of distributions.

In nonparametric deconvolution [3], the goal is to estimate the density function f0 of a univariate r.v.
X0, but in general we only have noisy data samples X1, . . . , Xn

iid∼ X = X0 +E, where E denotes
an independent noise term. Even though the distribution of E is unknown, making the assumption
that E is an SPD noise component, and that X0 is indecomposable, i.e. X0 itself does not contain
any SPD noise components, [3] show that it is possible to obtain consistent estimates of f0.

They distinguish between the symmetric noise and the underlying indecomposable component by
matching phase functions, defined as ρX (ω) = ϕX(ω)

|ϕX(ω)| , where ϕX (ω) denotes the characteristic
function of X . Observe that |ρX (ω)| = 1, and thus we are effectively removing the amplitude
information from the characteristic function. For a SPD noise component E, the phase function is
ρE(ω) ≡ 1. But then since ϕX = ϕX0

ϕE , we have that ρX0
= ρX = ϕX/|ϕX |, i.e. the phase

function is invariant to additive SPD noise components. This motivates us to construct explicit feature
maps of distributions with the same property and similarly to the motivation of [3], we argue that
real-world distributions of interest often exhibit certain amount of irregularity and it is exactly this
irregularity which is exploited in our methodology. In analogy to the MMD, we first define the phase
discrepancy (PhD) as a weighted L2-distances between the phase functions:

PhD(X,Y ) =

∫
Rd

|ρX (ω)− ρY (ω)|2 dΛ (ω) (2)

for some non-negative measure Λ (w.l.o.g. a probability measure). Now suppose we write X =
X0 + U , Y = Y0 + V , where U and V are SPD noise components. This then implies ρX = ρX0

and ρY = ρY0
Λ-everywhere, so that PhD(X,Y ) = PhD(X0, Y0). It is clear then that the PhD

is not affected by additive SPD noise components, so it captures desired invariance. However
PhD for Λ supported everywhere is in fact not a proper metric on the indecomposable probability
measures I(Rd), as one can find indecomposable random variables X and Y s.t. ρX = ρY and thus
PhD(X,Y ) = 0. An example is given in Appendix A.

While such cases appear contrived, we hence restrict attention to a subset of indecomposable
probability measures P(Rd) ⊂ I(Rd), which are uniquely determined by phase functions, i.e.
∀P,Q ∈ P(Rd) : ρP = ρQ ⇒ P = Q.

We now have the two following propositions (proofs are given in Appendix B).
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Proposition 1.

PhD(X,Y ) = 2− 2
∫ ( Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

)
dΛ(ω)

where ξω (x) =
[
cos
(
ω>x

)
, sin

(
ω>x

)]>
and ‖ · ‖ denotes the standard L2 norm.

Proposition 2.

K (PX , PY ) =
∫ ( Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

)
dΛ(ω)

is a positive definite kernel on probability measures.

Now, we can construct an approximate explicit feature map for kernelK. Taking a sample {ωi}mi=1 ∼

Λ, we define Ψ : PX 7→ R2m given by Ψ(PX) =
√

1
m

[
Eξω1 (X)

‖Eξω1
(X)‖ , . . . ,

Eξωm (X)
‖Eξωm (X)‖

]
. We will refer

to Ψ(·) as the phase features. Note that these are very similar to Fourier features, but the cos, sin-pair
corresponding to each frequency is normalised to have unit L2 norm. In other words, Ψ(·) can be
thought of as evaluations of the phase function at the selected frequencies. By construction, phase
features are invariant to additive SPD noise components. For an empirical measure, we simply have
the following:

Ψ(P̂X) =
√

1
m

[
Êξω1 (X)

‖Êξω1 (X)‖ , . . . ,
Êξωm (X)

‖Êξωm (X)‖

]
(3)

where we have replaced the expectations by their empirical estimates. Because
∥∥∥Ψ(P̂X)

∥∥∥ = 1,

we can construct P̂hD(P̂X , P̂Y ) =
∥∥∥Ψ(P̂X)−Ψ(P̂Y )

∥∥∥2 = 2 − 2Ψ(P̂X)>Ψ(P̂Y ), which is an

unbiased estimator of PhD(P̂X , P̂Y ). In summary, Ψ(P̂ ) ∈ R2m is an explicit feature vector of the
empirical distribution which encodes invariance to additive SPD noise components present in P 2, as
demonstrated in Figure F.1 in the Appendix. It can now be directly applied to (1) two-sample testing
up to SPD components, where the distance between the phase features, i.e. a Monte Carlo estimate of
the PhD in equation 2, can be used as a test statistic, with details given in section 5.1 and (2) learning
on distributions, where we use phase features as the explicit feature map for a bag of samples.

Although we have assumed an indecomposable underlying distribution so far, this assumption is
not strict. For distribution regression, if the indecomposable assumption is invalid, given that the
underlying distribution is irregular, it may still be useful to encode invariance as long as the benefit of
removing the SPD components irrelevant for learning outweighs the signal in the SPD part of the
distribution, i.e. there is a trade off between SPD noise and SPD signal. In practice, the phase features
we propose can be used to encode such invariance where appropriate or in conjunction with other
features which do not encode invariance, thus letting the data decide which features are discriminative
for the problem at hand.

In order to construct the approximate mean embeddings for learning, we first compute an
explicit feature map by taking averages of the Fourier features, as given by Φ(P̂X) =√

1
m

[
Êξω1(X), . . . , Êξωm(X)

]
. For phase features, we need to compute an additional normal-

isation term over each frequency as in (3). To obtain the set of frequencies {wi}mi=1, we can draw
samples from a probability measure Λ corresponding to an inverse Fourier transform of a shift-
invariant kernel, e.g. Gaussian Kernel. However, given a supervised signal, we can also optimise a set
of frequencies {wi}mi=1 that will give us a useful representation and good discriminative performance.
In other words, we no longer focus on a specific shift-invariant kernel k, but are learning discrim-
inative Fourier/phase features. To do this, we can construct a neural network (NN) with special
activation functions, pooling layers as shown in Algorithm D.1 and Figure D.1 in the Appendix.

4 Asymmetry in Paired Differences

We now consider a separate approach to nonparametric two-sample test, where we wish to test the
null hypothesis that H0 : P

d
=Q vs. the general alternative, but we only have iid samples arising from

2Note that, unlike the population expression Ψ(P ), the empirical estimator Ψ(P̂ ) will in general have a
distribution affected by the noise components and is thus only approximately invariant, but we observe that it
captures invariance very well as long as the signal-to-noise regime remains relatively high (Section 5.1).
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X ∼ P ? E1 and Y ∼ Q ? E2. i.e.

X = X0 + U Y = Y0 + V

where X0 ∼ P , Y0 ∼ Q lie in the space of P(Rd) of indecomposable distributions uniquely
determined by phase functions and U and V are SPD noise components. With this setting (proof in
Appendix B):

Proposition 3. Under the null hypothesis H0, X − Y is SPD ⇐⇒ X0
d
=Y0.

This motivates us to simply perform a two-sample test on X−Y and Y −X since its rejection would
imply rejection of X0

d
=Y0, as it tests for symmetry. However, note that this is a test for symmetry

only and that for consistency against all alternatives, positivity of characteristic function would need
to be checked separately.

Now, given two i.i.d. samples {Xi}ni=1 and {Yi}ni=1 with n even, we split the two samples into two
halves and compute Wi = Xi − Yi on one half and Zi = Yi −Xi on the other half, and perform
a nonparametric two sample test on W and Z (which are, by construction, independent of each
other). The advantage of this regime is that we can use any two-sample test – in particular in this
paper, we will focus on the linear time mean embedding (ME) test [7], which was found to have
performance similar to or better than the original MMD two-sample test [5], and explicitly formulates
a criterion which maximises the test power. We will refer to the resulting test on paired differences as
the Symmetric Mean Embedding (SME). Note although we have assumed X0, Y0 lie in the space of
P(Rd) of indecomposable distributions, in practice the test would only not reject if the underlying
distribution only differs in the symmetric components for the SME test (or SPD components for the
PhD test). We argue this is unlikely due to real life distributions being complex in nature. In practice,
we recommend the use of the ME and SME or PhD test together to provide an exploration tool to
understand the underlying difference, as demonstrated in the Higgs Data experiment in section 5.1.

It is tempting to also consider learning on distributions with invariances using this formalism. However
note that the MMD on paired differences is not invariant to the additive SPD noise components under
the alternative, i.e. in general MMD(X − Y, Y −X) 6= MMD(X0 − Y0, Y0 −X0). This means that
the paired differences approach to learning is sensitive to the actual type and scale of the additive
SPD noise components, hence not suitable for learning. The mathematical details and empirical
experiments to show this are presented in Appendix C and F.1.

5 Experimental Results

5.1 Two-Sample Tests with Invariances

In this section, we demonstrate the performance of the SME test and the PhD test on both artificial
and real-world data for testing the hypothesis H0 : X0

d
=Y0 based on samples {Xi}Ni=1 from X0 + U

and {Yi}Ni=1 from Y0 + V , where U and V are arbitrary SPD noise components (we assume the same
number of samples for simplicity). SME test follows the setup in [7] but applied to {Xi−Yi}N/2i=1 and
{Yi −Xi}Ni=N/2+1. For the PhD test, we use as the test statistic the estimate P̂hD(P̂X , P̂Y ) of (2). It
is unclear what the exact form of the null distribution is, so we use a permutation test, by recomputing
this statistic on the samples which are first merged and then randomly split in the original proportions.
While we are combining samples with different distributions, the permutation test is still justified
since, under the null hypothesis X0

d
=Y0, the resulting characteristic function ϕnull of the mixture

can be written as ϕnull = 1
2ϕX0ϕU + 1

2ϕX0ϕV = ϕX0( 1
2ϕU + 1

2ϕV ), and since the mixture of the
SPD noise terms is also SPD, we have that ρnull = ρX0 = ρY0 . For our experiments, we denote by
N the sample size, d the dimension of the samples, and we take α = 0.05 to be the significance level.
In the SME test, we take the number of test locations J to be 10, and use 20% of the samples to
optimise the test locations. All experimental results are averaged over 1000 runs, where each run
repeats the simulation or randomly samples without replacement from the dataset.

Synthetic example: Noisy χ2 We start by demonstrating our tests with invariances on a simulated
dataset where X0 and Y0 are random vectors with dimension d = 5, each dimension is the same in
distribution and follows χ2(4)/4 and χ2(8)/8 respectively. Note that these distributions have the
same mean (1) but different variances (1/2 and 1/4 respectively). An illustration of the true and
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Figure 1: Type I error and Power under various additional symmetric noise in the synthetic χ2 dataset.
Dashed line is the 99% Wald interval here. Left: Type I error, n11 denotes the noise to signal ratio
for the first set of samples and n12 for the second set. Right: Power, n1 denotes the noise to signal
ratio for the X set of samples and n2 denotes the noise to signal ratio for the Y set of samples.

empirical phase and characteristic function with noise for these two distributions can be found in
Appendix F.2. We construct samples {Xn1,i}Ni=1 and {Yn2,i}Ni=1 such that Xn1

∼ X0 + U , where
U ∼ N (0, σ2

1I) and similarly Yn2
∼ Y0 + V , where V ∼ N (0, σ2

2I), ni denotes the noise-to-signal
ratio given by the ratio of variances in each dimension, i.e. n1 = 2σ2

1 and n2 = 4σ2
2 . We first verify

that Type I error is indeed controlled at our design level of α = 0.05 up to various additive SPD
noise components. This is shown in Figure 1 (left), where X0

d
=Y0, both constructed using χ2(4)/4,

with the noiseless case found in Figure F.6 in the Appendix. It is noted here that the ME test rejects
the null hypothesis for even a small difference in noise levels, hence it is unable to let us target the
underlying distributions we are concerned with. This is unlike the SME test which controls the Type
I error even for large differences in noise levels. The PhD test, on the other hand, while correctly
controlling Type I at small noise levels, was found to have inflated Type I error rates for large noise,
with more results provided in Figure F.6 in the Appendix. This is due to the sensitivity to noise in the
permutation test. Namely, the test uses invariance to SPD of the population expression of PhD, but
the estimator of the null distribution of the test statistic will in general be affected by the differing
noise levels.

Next, we investigate the power, shown in Figure 1 (right). For a fair comparison, we have included
the PhD test power only for small noise levels, in which the Type I error is controlled at the design
level. In these cases, the PhD test has better power than the SME test. This is not surprising, as for the
SME we have to halve the sample size in order to construct a valid test. However, recall that the PhD
test has an inflated Type I error for large noises, which means that its results should be considered
with caution in practice. ME test rejects at all levels at all sample sizes as it picks up all possible
differences. SME and PhD are by construction more conservative tests whose rejection provides a
much stronger statement: two samples differ even when all arbitrary additive SPD components have
been stripped off.

Higgs Dataset The UCI Higgs dataset [1, 11] is a dataset with 11 million observations, where the
problem is to distinguish between the signal process where Higgs bosons are found, versus the
background process that do not produce Higgs bosons. In particular, we will consider a two-sample
test with the ME and SME test on the high level features derived by physicists, as well as a two-
sample test on four extremely low level features (azimuthal angular momentum φ measured by four
particle jets in the detector). The high level features here (in R7) have been shown to have good
discriminative properties in [1]. Thus, we expect them to have different distributions across two
processes. Denoting by X the high level features of the process without Higgs Boson, and Y as
the corresponding distribution for the processes where Higgs bosons are produced, we test the null
hypothesis that the indecomposable parts of X and Y agree. The results can be found in Table F.1 in
the Appendix, which shows that the high level features differ even up to additive SPD components,
with a high power for the SME and ME test even at small sample sizes (rejection rate of 0.94 at
sample size N = 500). Now we perform the same experiment, but with the low level features ∈ R4,
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Figure 2: Rejection ratio vs. sample size for
extremely low level features for Higgs dataset.
Dashed line is the 99% Wald interval for 1000
repetitions for α = 0.05. Note PhD is not used
here, due to its expensive computational cost.
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Figure 3: RMSE on the test set, corrupted by
various levels of noise averaged over 100 runs,
with the 5th and the 95th percentile. The noise-
less case is shown with one run. RMSE from
mean is 0.206.

commented in [1] to carry very little discriminating information, following the same experimental
setup from [2].

The results for the ME and SME test can be found in Figure 2. Here we observe that while ME
test clearly rejects and finds the difference between the two distributions, there is no evidence that
the indecomposable parts of the joint distributions of the angular momentum actually differ. In
fact, the test rejection rate remains around the chosen design level of α = 0.05 for all sample sizes.
This highlights the significance in using the SME test, suggesting that the nature of the difference
between the two processes can potentially be explained by some additive symmetric noise components
which may be irrelevant for discrimination, providing an insight into the dataset. Furthermore, this
also highlights the argument that given two samples from complex data collection and generation
processes, a nonparametric two sample test like ME will likely reject given sufficient sample sizes,
even if the discovered difference may not be of interest. With the SME test however, we can ask a
much more subtle question about the differences between the assumed true underlying processes.
Figures showing that the Type I error is controlled at the design level of α = 0.05 for both low and
high level features can be found in Figure F.7 in the Appendix.

5.2 Learning with Phase Features

Aerosol Dataset To demonstrate the phase features invariance to SPD noise component, we use the
Aerosol MISR1 dataset also studied by [24] and [25] and consider a situation with covariate shift
[18] on distribution inputs: the testing data is impaired by additive SPD components different to that
in the training data. Here, we have an aerosol optical depth (AOD) multi-instance learning problem
with 800 bags, where each bag contains 100 randomly selected multispectral (potentially cloudy)
pixels within 20km radius around an AOD sensor. The label yi for each bag is given by the AOD
sensor measurements and each sample xi is 16-dimensional. This can be understood as a distribution
regression problem where each bag is treated as a set of samples from some distribution.

We use 640 bags for training and 160 bags for testing. Here in the bags for testing only, we add
varying levels of Gaussian noise ε ∼ N (0, Z) to each bag, where Z is a diagonal matrix with
diagonal components zi ∼ U [0, σvi] with vi being the empirical variance in dimension i across all
samples, accounting for different scales across dimensions. For comparisons, we consider linear
ridge regression on embeddings with respect to a Gaussian kernel, approximated with RFF (GLRR)
as described in section 2.2 (i.e. a linear kernel is applied on approximate embeddings), linear ridge
regression on phase features (PLRR) (i.e. normalisation step is applied to obtain (3)), and also
the phase and Fourier neural networks (NN), described in Appendix D, tuning all hyperparameters
with 3-fold cross validation. With the same trained model, we now measure Root Mean Square
Error (RMSE) on the test sets corrupted with noise. We repeat testing 100 times with various noise-
corrupted test sets and results are shown in figure 3. It is also noted that a second level non-linear
kernel K does not improve performance on this problem [24].

We see that GLRR and PLRR are competitive (see Appendix Table F.2 for average across different
splits) in the noiseless case, and these clearly outperform both the Fourier NN and Phase NN (likely
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Table 1: Mean Square Error (MSE) on dark
matter dataset for 500 runs with 5th and 95th

percentile.

Algorithm MSE

Mean 0.16
PLRR 0.021 (0.018, 0.024)
GLRR 0.033 (0.030, 0.037)

LGRR 0.032 (0.028, 0.036)
PGRR 0.021 (0.017, 0.024)
GGRR 0.018 (0.015, 0.019)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise Level σ
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Figure 4: MSE with various levels of noise
added on test set, with 5th and 95th percentile.

due to the small size of the dataset). For increasing noise, the performance of GLRR degrades
significantly, and while the performance of PLRR degrades also, the model is much more robust
under additional SPD noise. In comparison, the Phase NN implementation is almost insensitive
to covariate shift in the test sets, unlike the performance of PLRR, highlighting the importance
of learning discriminative frequencies w in a very low signal-to-noise setting. It is noted that the
Fourier NN performs similarly to that of the Phase NN on this example. Interestingly, discriminative
frequencies learnt on the training data correspond to Fourier features that are nearly normalised (i.e.
they are close to unit norm - as shown in Figure F.9 in the Appendix). This means that even the
Fourier NN has learned to be approximately invariant based on training data, indicating that the
original Aerosol data potentially has irrelevant SPD noise components. This is reinforced by the
nature of the dataset (each bag contains 100 randomly selected potentially cloudy pixels, known to
be noisy [25]) and no loss of performance from going from GLRR to PLRR. The results highlights
that phase features are stable under additive SPD noise, even under such a difficult setting.

Dark Matter Dataset We now study the use of phase features on the dark matter dataset, composing
of a catalog of galaxy clusters. In this setting, we would like to predict the total mass of galaxy
clusters, using the dispersion of velocities in the direction along our line of sight. In particular, we
will use the ‘ML1’ dataset, as obtained from the authors of [16, 17], who constructed a catalog of
massive halos from the MultiDark mdpl simulation [9]. The dataset contains 5028 bags, with each
sample consisting of its sub-object velocity and its mass label. By viewing each galaxy cluster at
multiple lines of sights, we obtain 15 000 bags, using the same experimental setup as in [10]. For
experiments, we use approximately 9000 bags for training, and 3000 bags each for validation and
testing, keeping those of multiple lines of sight in the same set. As before, we use GLRR and PLRR
and we also include in comparisons methods with a second level Gaussian kernel (with RFF) applied
to phase features (PGRR) and to approximate embeddings (GGRR). For a baseline, we also include a
first level linear kernel (equivalent to representing each bag with its mean), before applying a second
level gaussian kernel (LGRR). We use the same set of randomly sampled frequencies across the
methods, tuning for the scale of the frequencies and for regularisation parameters.

Table 1 shows the results of the methods across 10 different data splits, with 50 sets of randomised
frequencies for each data split. We see that PLRR is significantly better than GLRR. This suggests
that under this model structure, by removing SPD components from each bag, we can target the
underlying signal and obtain superior performance, highlighting the applicability of phase features.
Considering a second level gaussian kernel, we see that the GGRR has a slight advantage over PGRR,
with PGRR performing similar to PLRR. This suggests that the SPD components of the distribution
of sub-object velocity may be useful for predicting the mass of a galaxy cluster if an additional
nonlinearity is applied to embeddings – whereas the benefits of removing them outweigh the signal
present in them without this additional nonlinearity. To show that indeed the phase features are
robust to SPD components, we perform the same covariate shift experiment as in the aerosol dataset,
with the results given in Figure 4. Note that LGRR is also robust to noise, as each bag is simply
represented by its mean.
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6 Conclusion

No dataset is immune from measurement noise and often this noise differs across different data
generation and collection processes. When measuring distances between distributions, can we
disentangle the differences in noise from the differences in the signal? We considered two different
ways to encode invariances to additive symmetric noise in those distances, each with different
strengths: a nonparametric measure of asymmetry in paired sample differences and a weighted
distance between the empirical phase functions. The former was used to construct a hypothesis test on
whether the difference between the two generating processes can be explained away by the difference
in postulated noise, whereas the latter allowed us to introduce a flexible framework for invariant
feature construction and learning algorithms on distribution inputs which are robust to measurement
noise and target underlying signal distributions.
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A Different Indecomposable Distributions Can Coincide in Phase

Let X and Y be (univariate) random variables with densities

fX(x) =
1√
2π
x2 exp(−x2/2), fY (x) =

1

2
|x| exp(−|x|).

Then it can be directly checked that their characteristic functions are given by

ϕX(ω) = (1− ω2) exp(−ω2/2), ϕY (ω) =
1− ω2

(1 + ω2)2
.

Thus, the phase functions coincide and are equal to

ρX(ω) = ρY (ω) =


+1, |ω| < 1,

−1, |ω| > 1,

undefined, ω ∈ {−1, 1}.

However, it is can also checked that even though they are symmetric, X and Y are indecomposable,
cf. e.g. [12], which use a related but distinct notion of indecomposability of random variables. The
plots of the densities and characteristic functions of X and Y are given in Fig. A.1.

Figure A.1: Example of two indecomposable distributions which have the same phase function. Left:
densities. Right: charactersitic functions.

B Phase Discrepancy and Asymmetry in Paired Differences Proofs

In this section, we will provide further details of the definitions, calculations and proofs in section 3
and 4. Phase discrepancy is defined as the weighted L2-distances between the phase functions, i.e.

PhD(X,Y ) =

∫
|ρX (ω)− ρY (ω)|2 dΛ (ω) ,

for some positive measure Λ (w.l.o.g. a probability measure). Phase discrepancy measures how much
X and Y differ up to an independent SPD noise component. We first have the following proposition:
Proposition 4.

PhD(X,Y ) = 2− 2

∫ E cos
(
ω> (X − Y )

)√
E cos (ω> (X −X ′))E cos (ω> (Y − Y ′))

dΛ(ω).

Proof.

PhD(X,Y ) =

∫
|ρX (ω)− ρY (ω)|2 dΛ (ω)

=

∫
|ρX (ω)|2 dΛ (ω) +

∫
|ρY (ω)|2 dΛ (ω)−

∫
(ρXρY + ρXρY ) dΛ

= 2−
∫
ϕXϕY + ϕXϕY
|ϕX | |ϕY |

dΛ

= 2− 2

∫
ϕZ√

ϕX−X′ϕY−Y ′
dΛ,
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where X and X ′ are iid, Y and Y ′ are iid and Z is an equal mixture of X − Y and Y −X . Indeed,

ϕXϕY + ϕXϕY = ϕX−Y + ϕY−X = 2ϕZ ,

and
ϕX−X′ = ϕXϕX = |ϕX |2 .

Note that X −X ′,Y − Y ′ and Z are all symmetric. Thus,

ϕZ(ω) = E
[
cos
(
ω>Z

)]
=

1

2
E
[
cos
(
ω> (X − Y )

)]
+

1

2
E
[
cos
(
ω> (Y −X)

)]
= E

[
cos
(
ω> (X − Y )

)]
.

Substituting provides us the result.

Proposition 5. Kω (PX ,PY ) =
(

Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

)
is a positive definite kernel on prob-

ability measures ∀ω, where here ξω (x) =
[
cos
(
ω>x

)
, sin

(
ω>x

)]
, and so is K (PX ,PY ) =∫

Kω (PX ,PY ) dΛ(ω) for any positive measure Λ.

Proof. Define a feature map ξω : X → R2 with ξω (x) =
[
cos
(
ω>x

)
, sin

(
ω>x

)]
, which induces a

kernel on X given by kω(x, y) = cos
(
ω> (x− y)

)
. Then κω (PX ,PY ) = E cos

(
ω> (X − Y )

)
=

Ekω(X,Y ) = (Eξω(X))
> Eξω(Y ) is a valid kernel on probability measures and so is the normalised

kernel

Kω (PX ,PY ) =
κω (PX ,PY )√

κω (PX ,PX)κω (PY ,PY )
=

(
Eξω(X)

‖Eξω(X)‖

)>( Eξω(Y )

‖Eξω(Y )‖

)
,

where we used that E cos
(
ω> (X −X ′)

)
= (Eξω(X))

> Eξω(X ′) = ‖Eξω(X)‖2. For the last
claim, simply note that integrating through the positive measure preserves positive semidefinitess, i.e.∑
αiαjK(Pi,Pj) =

∫
(
∑
αiαjKω(Pi,Pj)) dΛ (ω) ≥ 0.

As a direct corollary,

Proposition 6. PhD(X,Y ) = 2− 2K (PX ,PY ) = 2
∫ (

1−
(

Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

))
dΛ(ω).

Proposition 7. Under the null hypothesis, X − Y is SPD ⇐⇒ X0
d
=Y0.

Proof. Under H0, since X0 has the same distribution as Y0, then so do X − Y = X0 − Y0 +U − V
and Y −X = Y0 −X0 + V − U as U − V is symmetric. Moreover, ϕX−Y = |ϕX0

|2ϕUϕV > 0,
so X − Y is SPD. Conversely, if we assume that X − Y is SPD, i.e. ϕXϕY > 0, then ρX0

ρY0
> 0.

Since |ρX0
| = |ρY0

| = 1, this implies that ρX0
= ρY0

, and hence X0
d
=Y0, since we assumed that X0

and Y0 belong to P(Rd). Hence, we have that X − Y is SPD ⇐⇒ X0
d
=Y0.

C Paired Differences

Another way to measure asymmetry of the difference between random vectors X and Y is to
use MMD(X − Y, Y − X) instead of PhD(X,Y ). However, this quantity is not invariant, i.e.,
MMD(X − Y, Y −X) 6= MMD(X0 − Y0, Y0 −X0), and in fact the values will heavily depend on
the distributions of U and V . We note that

ϕX−Y (ω)− ϕY−X(ω) = 2iE sin
(
ω> (X − Y )

)
,

so that we are effectively measuring the size of the imaginary part of the characteristic function of
X − Y (which should not be there if it is symmetric). There are several different ways in which we
can write this quantity:
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MMD(X − Y, Y −X) = ‖Ek(·, X − Y )− Ek(·, Y −X)‖2Hk

=

∫
|ϕXϕY − ϕXϕY |2 dΛ

= 4

∫ [
E sin

(
ω> (X − Y )

)]2
dΛ(ω)

=

∫
|ϕX |2 |ϕY |2

(
2− ϕXϕY

ϕXϕY
− ϕXϕY
ϕXϕY

)
dΛ.

The last expression indicates that this quantity is affected by the amplitude of the individual characteris-
tic functions, experimental details to show this empirically can be found in F.1. Moreover, the quantity
does not appear to lend itself to the feature on distributions formalism, i.e. we were unable to derive
some Hilbert space features Υ(P) ∈ H such that MMD(X − Y, Y −X) = ‖Υ(PX)−Υ(PY )‖2H,
and it is thus unclear whether this approach can be used to define a valid kernel on distributions.

D Learning Discriminative Features

Algorithm D.1 Phase/Fourier Neural Network

Input: Batch of bag of samples X ∈ Rb×N×p, where
b is the batch size, N is the bag size and p is the dimen-
sion
Output: Classification or Regression Output
1. Compute f(X) = XW where W ∈ Rp×m
2. Apply a sin and cos activation function

l1(X) = [sin(f(X)) cos(f(X))]

3. Apply mean pooling operation over N , effectively
computing Êξωi(X) for each ωi ∈ Rp

l2(X) =
[
Êξω1

(X), . . . , Êξωm
(X)

]
∈ R2m

4. For Phase Neural Network, compute
∥∥∥Êξω1

(X)
∥∥∥

for each frequency and normalise to obtain:

l3(X) =

[
Êξω1

(X)

‖Êξω1 (X)‖ , . . . ,
Êξωm (X)

‖Êξωm (X)‖

]
5. Batch Normalisation Layer
6. Output layer

Figure D.1: Main structure of the phase
neural network

Algorithm D.1 shows the phase Neural Network (phase NN) and the Fourier Neural Network (Fourier
NN), where the latter can be obtained by simply removing step 4 in the algorithm. Although the
batch normalisation is not required, it is highly recommended for faster training of the network [6],
due to the normalisation for the phase neural network in step 5 of the algorithm. Because of the
neural network structure, we can take advantage of the rich literature, as well as alter the network
in order to target a variety of different problems. For example, setting now the loss function as the
squared loss, cross entropy or pinball loss, we can solve tasks in regression, classification or quantile
regression on distributional inputs with discriminative frequencies. The Fourier neural network can
also be extended to inputs in Rp for normal regression and classification problems by removing the
mean pooling operation in step 3 of the algorithm.
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E Distribution Regression with Invariance for ABC

Algorithm E.1 Phase Regression, Fourier Regression

Input: prior π for θ, data-generating process P , phase or Fourier features
Output: Phase or Fourier Regression Neural Network
for i = 1, . . . , n do

Sample θi ∼ π
Sample dataset Bi = {xij}Nj=1 from P (·|θi)

end for
Train Phase or Fourier neural network with {Bi, yi}ni=1

Algorithm E.2 Phase-ABC or Fourier-ABC

Input: prior π for θ, data-generating process P , observed data B∗ = {x∗j}N
∗

j=1, ε, number of
particles K
Output: Weighted Posterior sample

∑
k wkδθk

1. Perform Phase or Fourier Regression, obtain m(·)
2. ABC
for k = 1, . . . ,K do

Sample θk ∼ π
Sample dataset Bk = {xkj}j from P (·|θk)

Compute w̃k = exp

(
−||m(Bk)−m(B∗)||22

ε

)
end for
wk = w̃k/

∑
k w̃k

We have designed an explicit feature map for a bag of samples that can be used for any distribution
regression problem. We now present its potential application to Approximate Bayesian Computation
(ABC). Motivated by the approach of [4] and [13], we propose to use the phase features to construct
an optimal summary statistic (under some loss function) for ABC. ABC is a Bayesian framework
that allows us to approximate the posterior distribution of some parameter θ by approximating
the likelihood function through simulations. To capture this approximation of the likelihood
function, simulated datasets from the model are compared with the observed data using some
lower dimensional summary statistics. If the summary statistic is sufficient, then there is no loss of
information when projecting the data onto lower dimensional space. In practice however, sufficient
statistics are not available for complex models of interest and instead using the strategy of [4], one
can construct summary statistics that provide inference of θ which is optimal with respect to a given
loss function.

In particular, we will focus on the squared loss function as given by L(θ, θ′) = (θ − θ′)2.
[4] showed that under this loss, the posterior mean of the θ given observations X is in fact the
optimal summary statistic of X for the ABC procedure. However, since this quantity can not be
analytically computed, one approach is to estimate it by fitting a regression model from simulated
data, some examples of this include the semi-automatic ABC [4] and DR-ABC [13]. Here we focus
on ideas from DR-ABC, which uses a kernel distribution regression approach, treating each simulated
dataset (given θ simulated from the prior) as a bag of samples and taking its label to be θ. After
training the regression model, it proceeds to using it as a summary statistic as given in algorithm
E.2. The DR-ABC paper further proposed the conditional DR-ABC (CDR-ABC), which makes the
assumption that only certain aspects of the data have an influence on θ. By conditioning on such
nuisance variables and then using conditional distribution regression (by embedding conditional
distributions [21]), it can better account for the functional relationship inside the model. However,
one problem with this approach is that the nuisance variables have to be observed directly, even for
the true dataset, which may often not be the case. For example, consider the hierarchical model we
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used to illustrate the utility of phase features for regression below.

θ ∼ Γ(α, β), Z ∼ U [0, σ], ε ∼ N (0, Z),

X ∼
Γ
(
θ/2, 1/2

)
√

2θ
+ ε, (4)

for some fixed values of α, β and σ. Here θ is the parameter we are interested in, ε is a latent noise
variable (unobserved) and X is the observation. Since neither ε nor Z are observed on the true dataset,
we can only use DR-ABC, not CDR-ABC. But DR-ABC then does not take into account the model
structure which tells us that ε is irrelevant for inferring θ, and it is thus likely to give poor performance
for large values of σ. Hence, we propose to use phase features inside such regression model, which
will be invariant to the noise variable ε which is an SPD component in observations. By using phase
features for distribution regression, we should be able to better capture the functional relationship
between θ and its corresponding dataset, a bag from X|θ and hence build better summary statistics
for ABC. In some sense, this approach can be thought of as implicitly conditioning out the latent
nuisance variable ε, similarly as CDR-ABC does when it is observed. Furthermore, although we
have chosen this example as an illustration, the phase features could be applied to many complex
models with nuisance latent variables, even when we cannot write their contribution explicitly as
here. The algorithms E.1 and E.2 shows the approach as in DR-ABC, but now replaced by our phase
or Fourier regression approaches to compute summary statistics, and we denote these as Phase-ABC
and Fourier-ABC. Some experimental results can be found in F.4.1.

F Additional Results

F.1 Asymmetry in Paired Differences Experiment

Figure F.1: Histograms on various estimates for all pairs of bags with varying additive noise, red line
denotes the noiseless case. Top: Estimated MMD on paired differences for all pair of bags, the red
line given by the mean of the estimated MMD on paired differences for bags without noise. Middle:
the squared distance between Fourier features (an estimate of MMD). Bottom: the squared distance
between phase features (an estimate of PhD).

While it performed well when testing the null hypothesis, the MMD on paired differences is not
invariant to the additive SPD noise components under the alternative hypothesis. Using the synthetic
experimental setup as before, we simulate 100 noiseless bags from the two scaled χ2-distributions
X0 ∼ χ2(4)/4 and Y0 ∼ χ2(8)/8, where each bag contains 1000 samples. We add varying
levels of Gaussian noise to each bag, i.e. the bags are of the form Xi = X0 + N (0, Zi) and
Yi = Y0 +N (0,Wi), where Zi,Wi ∼ U [0, 0.1]. We compute the estimate of the MMD on paired
differences, the squared distance between Fourier features (an estimate of MMD) and the squared
distance between phase features (an estimate of PhD) for all pairs of bags. In all computations, we
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used the same set of frequencies {wi}100i=1 (sampled from a Gaussian distribution). We do the same for
the noiseless samples (or use analytic expressions where available). The results are shown in figure
F.1. We see that the MMD on paired differences is not invariant to SPD noise components (clearly,
the noiseless case indicated by the red line has a much higher level of asymmetry than the noisy case
where due to the presence of high levels of symmetric noise, differences often do appear symmetric).
This is unlike the phase features, which maintain some level of invariance, the estimates stay away
from 0 – preserving the signal about the difference of indecomposable χ2 components – and the
mode is nearer the true value, even though there is clearly some variance, however this is expected
as its PhD population expression is invariant, but not its estimator, furthermore the frequencies are
sampled (with the median heuristic bandwidth) and not learnt. This suggests that phase features are
more suitable for invariant learning on distributions than MMD on paired differences. The Fourier
features are also given for comparison, but these are not expected to be invariant, as shown.

F.2 Characteristic and Phase Function Plots

Figure F.2: The black line here correspond to the real and imaginary part of the true characteristic
function of the χ2(4)/4 and χ2(8)/8 distribution, denoted X,Y on the top and bottom graphs
respectively. The red points denote the empirical characteristic function constructed with 750
frequencies sampled from a Gaussian kernel with σ = 2 using a bag size of 1000 observations, with
some additional Gaussian noise.
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Figure F.3: The black line here correspond to the real and imaginary part of the true phase function
of the χ2(4)/4 and χ2(8)/8 distribution, denoted X,Y on the top and bottom graphs respectively.
The red points denote the empirical phase function constructed with 750 frequencies from a Gaussian
kernel with σ = 2 using a bag size of 1000 observations, with some additional Gaussian noise.

Figure F.4: The top and bottom graph denotes the difference in the real and imaginary part of the
characteristic function for the χ2(4)/4 and χ2(8)/8 as in figure F.2.
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Figure F.5: The top and bottom graph denotes the difference in the real and imaginary part of the
phase function for the χ2(4)/4 and χ2(8)/8 as in figure F.3.

F.3 Two-Sample Tests with Invariances

F.3.1 Synthetic χ2 Dataset
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Figure F.6: Extra Type I error results for the synthetic example with χ2 Left: With no noise added
for the ME, PhD and SME test. Right: Various additive Gaussian components, our base distribution
without addition of noise is χ2(4)/4. Here n11 refers to the noise to signal ratio for the first set of
samples and n12 refers to the second set of samples.

In figure above, the black dashed line is the 99% Wald interval α± 2.57
√
α(1− α)/1000, where

here α = 0.05 is the significance level and 1000 is the number of repetitions.

On the left figure, we see that indeed all three test considered in this paper indeed controls the Type
I error, when the underlying distribution between the two sets of sample is the same, note here no
additional noise is added.

On the right figure, we see that the PhD statistic controls Type I error for no added Gaussian noise,
and also control Type I error for small differences in additive Gaussian components, unlike the ME
test. However, we see that the type I error for a larger noise to signal ratio on the two set of samples
indeed does alleviate the Type I error. This is not surprising, as the null distribution was constructed
by using a permutation test, using:

ϕnull =
1

2
ϕX0

ϕU +
1

2
ϕX0

ϕV = ϕX0
(
1

2
ϕU +

1

2
ϕV ),
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and if the estimated phase features are biased, in the regime with large additive Gaussian noise,
then the following may not be true approximately: ρ̂null = ρ̂X0 = ρ̂Y0 , leading a to a biased null
distribution.

F.3.2 Higgs Dataset

Table F.1: Power for various sample size for high level features of the Higgs dataset

SAMPLE SIZE N SME POWER ME POWER
500 0.94 1.0
600 0.969 0.999
700 0.987 1.0
800 0.989 1.0
900 0.994 1.0
1000 0.995 1.0

The table here refers to the high level features of the Higgs dataset, which have been shown to be
discriminative in [1]. In this case, clearly both the ME and SME achieve good power, note here the
SME has slightly less power, due to using only half of the samples to keep independence.

Figure F.7: Type I error for the Higgs Dataset. Left: Extremely low level features Right: High level
features. The black dashed line is the 99% Wald interval α ± 2.57

√
α(1− α)/1000, where here

α = 0.05 is the significance level and 1000 is the number of repetitions.

The two figures here show that the Type I error is controlled for the ME and SME test, when we have
X0

d
=Y0, where we only consider samples drawn from Y , corresponding to the distribution of the

processes where the Higgs Boson are produced. Note that on the right graph, the Type I error at first
may be slightly alleviated due to small set of samples.

F.4 Learning with Phase Features

F.4.1 Toy Dataset

We demonstrate the use of phase features in the synthetic dataset generated by the following model
(note this is the ABC hierarchical model discussed above):

θ ∼ Γ(α, β), Z ∼ U [0, σ], ε ∼ N (0, Z),

[X]j ∼
Γ
(
θ/2, 1/2

)
√

2θ
+ ε j = 1, . . . , 5 (5)

where we take α = 7.0, β = 1.0 and θ to be the parameter we are interested in predicting, given
a bag of samples from X|θ, sampled iid across dimensions. Note in the model, by normalising,
our underlying signal has variance 1, this enables us to better control the signal-to-noise ratio. For
the experiment, we generate 500 bags of samples from the model, where each bag contains 1000
observations as training data for the Fourier and phase neural networks. We use a mean squared error
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Figure F.8: MSE of θ, using the Fourier and phase neural network averaged over 100 runs. Here
noise σ is varied between 0 and 3.5, and the 5th and the 95th percentile is shown.

(MSE) loss, using L2 weight regularisation with coefficient λ and perform a 3-fold cross-validation,
optimising the learning rate, the number of frequencies and λ. For the test data, we generate 500 bags,
and check the MSE, we repeat this process 100 times and results are shown in Figure F.8. Figure F.8
shows that the phase features is more stable under increasing noise, due to invariance to the additive
SPD noise components, as demonstrated by the slower rate of increase of MSE relative to that of the
Fourier features. It is of interest to note that under no noise, the phase features actually outperform
the Fourier features slightly, possibly due to how the normalisation of Fourier features interacts with
the network structure.

F.4.2 Aerosol Dataset

Figure F.9: Histograms for the distribution of the L2 norm of the averages of Fourier features over
each frequency w for the original aerosol test set and the aerosol test set with added noise (σ = 3),
here red line denotes the unit norm representing the phase features Top Green: Random Fourier
Features w (with the optimised kernel bandwidth) Bottom Blue: Learnt Fourier features w from the
Fourier Neural Network.

We here provide some additional results for the Aerosol Dataset. First, we provide the average RMSE
on the aerosol dataset (without noise on test set), based on 10 runs, for different train and test splits in
Table F.2.
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Table F.2: Average RMSE for the Aerosol Dataset across 10 runs, for different train and test splits,
with standard deviation in brackets

FOURIER NN PHASE NN GLRR PLRR
NO NOISE 0.101 (0.011) 0.101 (0.008) 0.079 (0.010) 0.085 (0.009)

In the experiments for the Aerosol covariate shift and above, we have seen that the Fourier NN
performs similarly to the Phase NN, even under the addition of Gaussian noise, here we provide some
possible insights. From the trained Fourier NN on the original dataset, we extract the frequencies
w learnt and compute

∥∥∥Êξω(X)
∥∥∥ for each frequency over the original and noisy test set, similarly

we do this for the frequencies generated from the Gaussian kernel (with the optimised bandwidth
on the original aerosol dataset). We show the empirical distribution of both of these in the figure
above, we see that the discriminative frequencies learnt on the training data correspond to the Fourier
features which are nearly normalised (i.e. they are close to unit norm like phase features, shown by
the red line), this may suggest that the learnt frequencies have captured a notion of invariance to
additive SPD components on just the training data. This provides insight into good performance of
Fourier NN even under the covariate shift. It also indicates that the original Aerosol data potentially
has irrelevant SPD noise components that the Fourier NN has learnt to ignore.

G Implementation Details

G.1 PhD two sample test

For the PhD two sample test for the toy dataset, for each of the 1000 runs, we use a permutation size
of 400, with the number of frequencies sampled set at 50. Here the frequencies are sampled using the
radial frequency distribution, where Σ is chosen to be σ2I, with σ2 being the empirical variance of
the two set of samples. The Radial Frequency Distribution is defined as follows:

w = RΣ−
1
2ψ

where ψ ∈ Rn is uniformly distributed on the L2 unit sphere Sn−1, and R ∈ R+ is a radius drawn
independently from a folded Gaussian N+(0, 1). The radial frequency distribution is useful in high
dimensions, as unlike the normal distributions, which ‘under samples’ the low or middle frequencies,
it is able to sample a broader range of frequencies due to its form. By covering a broader range of
frequencies, we may be able to ‘better encode’ information of the distribution represented by the
bags, leading to a feature map that is more informative.

G.2 Toy Example in Appendix

We implement the phase and Fourier neural network in TensorFlow. For the network, we use a
squared loss function with an additional L2 weight decay for regularisation. For optimisation, we
use ADAM [8] with fixed learning rate decay and 120 epochs, with a batch size of 10. To tune this
network, we perform 3-fold cross validation over, where we initialise the network 3 times, and the
average error is computed on the test fold. We tune the learning rate, the number of frequencies and
the regularisation parameter λ for the neural network. Furthermore, we initialise the network with the
optimally tuned parameters 6 times and test its performance on an independent validation set, before
choosing the best performing model. We also keep a history of the mean and variance of the batches
(just before the batch normalisation layer) from the last training epochs, and we take the mean of
those to be used during testing.

G.3 Aerosol Dataset

For the network, we use a squared loss function with an additional L2 weight decay for regularisation,
with a separate regularisation parameter for the two individual layers. For optimisation, we again
use ADAM [8] with fixed learning rate decay and 120 epochs, with a batch size of 10. We perform a
3-fold cross validation, and compute the MSE. We tune the learning rate, regularisation parameters

21



and also number of frequencies for the neural network, here we initialise the first layer with Gaus-
sian distribution with standard deviation = 1/γ0, where γ0 denote the median heuristic for kernel
bandwidth.

G.4 Dark Matter Dataset

For all methods we sample frequencies from the normal distribution (with standard deviation = 1/γ0,
where γ0 denote the median heuristic for kernel bandwidth.). After sampling a set of frequencies, we
tune the scale of the set of frequencies and also the ridge regularisation parameter using the validation
set. In particular we use 75 frequencies on the first and second level of the kernel whenever they are
used. Note we use the same set of frequencies (at each individual kernel level) across all the methods
in a single run to allow for easier comparison, with potentially different scale tuned on the validation
set.
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