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Abstract

We introduce kernel nonparametric tests for Lancasteethegiable interaction
and for total independence, using embeddings of signeduresamto a repro-

ducing kernel Hilbert space. The resulting test statisies straightforward to
compute, and are used in powerful interaction tests, whietcansistent against
all alternatives for a large family of reproducing kernal¢e show the Lancaster
test to be sensitive to cases where two independent caubeisiurally have weak

influence on a third dependent variable, but their combirféetehas a strong

influence. This makes the Lancaster test especially switéidding structure in

directed graphical models, where it outperforms competingparametric tests in
detecting such V-structures.

1 Introduction

The problem of nonparametric testing of interaction betwesriables has been widely treated in
the machine learning and statistics literature. Much ofviioek in this area focuses on measuring
or testing pairwise interaction: for instance, the Hilb®dhmidt Independence Criterion (HSIC) or
Distance Covariance [1, 2, 3], kernel canonical corretafiy 5, 6], and mutual information [7].

In cases where more than two variables interact, howevergttestions we can ask about their
interaction become significantly more involved. The simptase we might consider is whether the

variables are mutually independefty = Hle Px,, as considered iiR? by [8]. This is already

a more general question than pairwise independence, saiogige independence does not imply
total (mutual) independence, while the implication holdgtie other direction. For example, if

X andY are i.i.d. uniform on{—1,1}, then(X,Y, XY) is a pairwise independent but mutually
dependent triplet [9]. Tests of total and pairwise indemeree are insufficient, however, since they
do not rule out all third order factorizations of the joinsttibution.

An important class of high order interactions occurs when gimultaneous effect of two vari-
ables on a third may not be additive. In particular, it may begible thatY 1 Z andY L Z,
whereas~ ((X,Y) 1L Z) (for example, neither adding sugar to coffee nor stirring toffee in-
dividually have an effect on its sweetness but the joint gmee of the two does). In addition,
study of three-variable interactions can elucidate cersaritching mechanisms between positive
and negative correlation of two genes expressions, asatlautiby a third gene [10]. The presence
of such interactions is typically tested using some formmlgsis of variance (ANOVA) model
which includes additional interaction terms, such as petslof individual variables. Since each
such additional term requires a new hypothesis test, thigases the risk that some hypothesis test
will produce a false positive by chance. Therefore, a testithable to directly detect the presence
of any kindof higher-order interaction would be of a broad interesttatistical modeling. In the
present work, we provide to our knowledge the first nonpataatest for three-variable interaction.
This work generalizes the HSIC test of pairwise independgeaiecd has as its test statistic the norm



of an embedding of an appropriate signed measure to a reprapkernel Hilbert space (RKHS).
When the statistic is non-zero, all third order factoriaas can be ruled out. Moreover, this test is
applicable to the cases whekg Y andZ are themselves multivariate objects, and may take values
in non-Euclidean or structured domaihs.

One important application of interaction measures is inniegy structure for graphical models. If
the graphical model is assumed to be Gaussian, then secoadinteraction statistics may be used
to construct an undirected graph [11, 12]. When the intevastare non-Gaussian, however, other
approaches are brought to bear. An alternative approadhuctise learning is to employ condi-
tional independence tests. In the PC algorithm [13, 14,d %¥}structure (a directed graphical model
with two independent parents pointing to a single child)asedted when an independence test be-
tween the parent variables accepts the null hypothesidewahiest of dependence of the parents
conditioned on the child rejects the null hypothesis. TheaRforithm gives a correct equivalence
class of structures subject to the causal Markov and fditbis assumptions, in the absence of
hidden common causes. The original implementations of @ealBorithm rely on partial correla-
tions for testing, and assume Gaussianity. A number of @lgos have since extended the basic
PC algorithm to arbitrary probability distributions oveulivariate random variables [16, 17, 18],
by using nonparametric kernel independence tests [19] andittonal dependence tests [20, 18].
We observe that our Lancaster interaction based test pewdtrong alternative to the conditional
dependence testing approach, and is seen to outperforieregaproaches in detecting cases where
independent parent variables weakly influence the chilthisde when considered individually, but
have a strong combined influence.

We begin our presentation in Section 2 with a definition oéiattion measures, these being the
signed measures we will embed in an RKHS. We cover this enbggdocedure in Section 3. We
then proceed in Section 4 to define pairwise and three wayaictiens. We describe a statistic to
test mutual independence for more than three variablespenvide a brief overview of the more
complex high-order interactions that may be observed wbandr more variables are considered.
Finally, we provide experimental benchmarks in Section 5.

2 Interaction Measure

An interaction measure [21, 22] associated to a multidiriogras probability distributionP of a ran-
domvector( X, ..., Xp) taking values in the product spadg x - - - x Xp is a signed measurk P
that vanishes whenevét can be factorised in a non-trivial way as a product of its ¢idg mul-
tivariate) marginal distributions. For the cagés= 2, 3 the correct interaction measure coincides
with the the notion introduced by Lancaster [21] as a formmatipct

D
AP = J[(P%, - Px,), 1)
i=1
where each produmﬁ[f:l1 P%. signifies the joint probability distributiofx, —Xi, of a subvector

(Xil, ceey XZ-D,). We will term the signed measure in (1) thbancaster interaction measurin the
case of a bivariate distribution, the Lancaster interacti@asure is simply the difference between
the joint probability distribution and the product of the ngiaal distributions (the only possible
non-trivial factorization forD = 2), A P = Pxy — Px Py, while in the case) = 3, we obtain

AP = Pxyz— PxyPz — PyzPx — PxzPy +2Px Py Py. 2
Itis readily checked that
(X,Y)LZV(X,Z) LYV (Y,Z)LX = A,P=0. 3)

For D > 3, however, (1) does not capture all possible factorizatmiibe joint distribution, e.g.,
for D = 4, it need not vanish it X, X5) 1 (X3, X4), but X; and X, are dependent anl; and
X, are dependent. Streitberg [22] corrected this definitiangia more complicated construction
with the Mdbius function on the lattice of partitions, whieve describe in Section 4.3. In this

1As the reader might imagine, the situation becomes more lrmamain when four or more variables
interact simultaneously; we provide a brief technical giew in Section 4.3.



work, however, we will focus on the case of three variablasfanmulate interaction tests based on
embedding of (2) into an RKHS.

The implication (3) states that the presence of Lancasterdntion rules out the possibility of any
factorization of the joint distribution, but the conversenot generally true; see Appendix C for de-
tails. In addition, it is important to note the distinctioativeen the absence of Lancaster interaction
and the total (mutual) independence(df, Y, Z), i.e., Pxyz = Px Py Pz. While total indepen-
dence implies the absence of Lancaster interaction, thedimeasurd, ;P = Pxy z — Px Py Pz
associated to the total (mutual) independendedfY, Z) does not vanish if, e.g(X,Y) L Z, but

X andY are dependent.

In this contribution, we construct the non-parametrictesthe hypothesid; P = 0 (no Lancaster
interaction), as well as the non-parametric test for theollypsisA,,. P = 0 (total independence),
based on the embeddings of the corresponding signed measyie and A, P into an RKHS.
Both tests are particularly suited to the cases wheré” andZ take values in a high-dimensional
space, and, moreover, they remain valid for a variety of Banldean and structured domains, i.e.,
for all topological spaces where it is possible to constaulid positive definite function; see [23]
for details. In the case of total independence testing, ppraach can be viewed as a generalization
of the tests proposed in [24] based on the empirical chaiatitsfunctions.

3 Kernel Embeddings

We review the embedding of signed measures to a reprodueimgkHilbert space. The RKHS
norms of such embeddings will then serve as our test statistiet Z be a topological space.
According to the Moore-Aronszajn theorem [25, p. 19], foegvsymmetric, positive definite
function (henceforttkerne) k£ : Z x Z — R, there is an associated reproducing kernel Hilbert
space (RKHSY,, of real-valued functions o& with reproducing kernet. The mapy : Z — Hx,

¢ : z+— k(- z) is called the canonical feature map or the Aronszajn map denote byM (Z2)

the Banach space of all finite signed Borel measureg ohhe notion of a feature map can then be
extended to kernel embeddings of elementd 6fZ) [25, Chapter 4].

Definition 1. (Kernel embedding) Let k be a kernel or£, andv € M(Z). Thekernel embedding
of v into the RKHSH, is pux(v) € My such thatf f(z)dv(z) = (f, k(1)) forall f e H.

Alternatively, the kernel embedding can be defined by thenBecintegraj. (v f k(-

If a measurable kernélis a bounded function, it is straightforward to show using leesz repre—
sentation theorem that, () exists for allv € M(Z).2 For many interesting bounded kernéls
including the Gaussian, Laplacian and inverse multiquadighe embeddingy, : M(Z) — Hy is
injective. Such kernels are said to inéegrally strictly positive definitdSPD) [27, p. 4]. A related
but weaker notion is that of eharacteristickernel [20, 28], which requires the kernel embedding
to be injective only on the sevt! (Z) of probability measures. In the case tltais ISPD, since
‘Hy. is a Hilbert space, we can introduce a notion of an inner pebdetween two signed measures
v, e M(2),

() 3= ), 0 g, = [ ol ) ().

Since uy is injective, this is a valid inner product and induces a n@mM (Z), for which
vl = (v, u))l/2 = 0ifand only if v = 0. This fact has been used extensively in the literature to
formulate: (a) a nonparametric two-sample test based anatsbn of maximum mean discrepancy
IP = Q| for samples{X,}", “%" P, {v;}", “&" @ [29] and (b) a nonparametric indepen-

dence test based on estimation|étyy — Px Py |,.;, for a joint sample{(X;, Yi)}i_, L pyy

[19] (the latter is also called a Hilbert-Schmidt indepemcke criterion), with kernek ® [ on the
product space defined as$z, 2')l(y, y’). When a bounded characteristic kernel is used, the above
tests areonsistent against all alternativeand their alternative interpretation is as a generabpati

[3, 26] of energy distance [30, 31] and distance covaria@c8Z?].

2Unbounded kernels can also be considered, however [26]hidrcase, one can still study embeddings
of the S|gned measurest,/*(Z) ¢ M(Z), which satisfy a finite moment condition, i.eM,/*(Z) =

{u e M(2) : [KY2(z,2)dlv|(2) < oo}



Table 1:V-statistic estimates dfv, ")), ., in the two-variable case

| Z/\IJI | PXY | PXpY |
Pxy n—B(KoL)++ n—lfg(KL)++
Px Py =K Lyy

In this article, we extend this approach to the three-végigase, and formulate tests for both
the Lancaster interaction and for the total independensmgusimple consistent estimators of
IALP1g10m aNA|[Ator Pll,060., respectively, which we describe in the next Section. Usireg t
same arguments as in the tests of [29, 19], these tests areaisistent against all alternatives as
long as ISPD kernels are used.

4 Interaction Tests

Notational remarks: Throughout the papes,denotes an Hadamard (entrywise) product. Adte
ann x n matrix, andk” a symmetrion x n matrix. We will fix the following notational conventions:
1 denotes am x 1 column of onesA; = >~ | A;; denotes the sum of all elements of théh
column of A; A, = 2?21 A;; denotes the sum of all elements of thth row of 4; A, =

> i1 25— Aij denotes the sum of all elements4f Ky = 117K, ie., (K4l = Kvj = Kj,
and [KI]” =K = K.

4.1 Two-Variable (Independence) Test

We provide a short overview of the kernel independence fg4t9, which we write as the RKHS
norm of the embedding of a signed measure. While this matenat new (it appears in [29, Section
7.4)), it will help define how to proceed when a third variaislntroduced, and the signed measures
become more involved. We begin by expanding the squared RK® || Pxy — PXPy||i®z as
inner products, and applying the reproducing property,

”PXY—PXPY”i(@l = ExyEX/y//{(X,XI)l(Y,YI) —|—ExEX/k(X,X/)EYEY’l(YaY/)
—9Exy [Exk(X, X)Eyl(Y,Y")], @)

where(X,Y) and(X’,Y”) are independent copies of random variablestor ) with distribution
ny.

Given a joint sample(X;,Y;)}"_, S Pxy, an empirical estimator of Pxy — PXPy||i®l is
obtained by substituting corresponding empirical meatts (4), which can be represented using
Gram matricess andL (Ki; = k(X;, X;), Li; = 1(Y;,Y;)),

. 1
ExyExy kX, X)(Y,Y') = KayLay = —5 (KoL)
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Since these are V-statistics [33, Ch. 5], there is a bia@efn~!); U-statistics may be used if an
unbiased estimate is needed. Each of the terms above condssip an estimate of an inner product
(v, V")) 1, for probability measures andv’ taking values in{ Pxy, Px Py }, as summarized in
Table 1. Even though the second and third terms involveetrguid quadruple sums, each of the
empirical means can be computed using sums of all terms tdioanatrices, where the dominant
computational cost is in computing the matrix prodécL. In fact, the overall estimator can be



Table 2:V-statistic estimates df(v, v')) in the three-variable case

kRlRm
v\’ | nPxyz | n?Pxy Py | n?Px z Py | n?Py z Px | n3Px Py Py
nPxvy z (KoLo]\{)JrJr ((KOL)IVI)JrJr ((KOJW)L)JrJr ((M'OL)K)JrJr tr(Kqy oLy oMy)
n?Pxy Py (KoL), My, (MKL), (KLM), (KL){{ My
n?Px z Py (KoM), Ly, (KML) (KM)y Ly
n’ Py g Px (LoM),, Kit (LM) 4 K4p
n®Px Py Py KLy My,

~ A~ A~ 2
computed in an even simpler form (see Proposition 9 in AppeR) asHPXy — PXPka =
®
& (KoHLH), , ,whereH = I— 111" is the centering matrix. Note that by the idempotence of
H,we also have thdtk c HLH), , = (HKH o HLH) . Inthe rest of the paper, for any Gram

matrix K, we will denote its corresponding centered malfii¥ H by K. When three variables are
present, a two-variable test already allows us to determvimether for instancéX,Y) 1 Z, i.e.,
whetherPxy ; = Pxy Py. Itis sufficient to treat X, Y") as a single variable on the product space
X x ), with the product kernét  I. Then, the Gram matrix associated 6, Y') is simply K o L,

and the correspondinig-statistic is# (K oLo M) 2 What is not obvious, however, is if a

++
V-statistic for the Lancaster interaction (which can beutlitt of as a surrogate for the composite
hypothesis of various factorizations) can be obtained imédar form. We will address this question
in the next section.

4.2 Three-Variable Tests

As in the two-variable case, it suffices to derive V-statistor inner product§(v, v')) . o 0. Where

v andy’ take values in all possible combinations of the joint andaeelucts of the marginals, i.e.,
Pxyz, Pxy Pz, etc. Again, it is easy to see that these can be expressedtain ®@xpectations of
kernel functions, and thereby can be calculated by an apptepnanipulation of the three Gram
matrices. We summarize the resulting expressions in Tabl¢h2ir derivation is a tedious but
straightforward linear algebra exercise. For compactnissappropriate normalizing terms are
moved inside the measures considered.

Based on the individual RKHS inner product estimators, we maw easily derive estimators for
various signed measures arising as linear combinatioRsef;, Pxy Pz, and so on. The first such
measure is an “incomplete” Lancaster interaction meadygeP = Pxy z+Px Py Pz —Py 7 Px —
Px 7 Py, which vanishes ifY; Z) 1L X or (X,Z) L Y, but not necessarily ifX,Y) 1L Z. We
obtain the following result for the empirical measure

~ 112
Proposition 2 (Incomplete Lancaster interactionHA(Z)P

= # (K oLo ]V[) .
k@l@m ++
Analogous expressions hold fdr(X)P andA(y)P. Unlike in the two-variable case where either
matrix or both can be centered, centering of each matrixenthinee-variable case has a different
meaning. In particular, one requires centering of all theemel matrices to perform a “complete”
Lancaster interaction test, as given by the following Psifmn.

2

Proposition 3 (Lancaster interaction)HALPH =1 (f( oLo M)

2 .
EQlm n ++

The proofs of these Propositions are given in Appendix A. Warsarize various hypotheses and

the associated V-statistics in the Appendix B. As we will d@strate in the experiments in Section

5, while particularly useful for testing the factorizatibypothesis, i.e., fofX,Y) L Z v (X, Z) L
~ 112
Y Vv (Y,Z) L X, the statisticHALPHk z can also be used for powerful tests of either the
Rl@®mMm
individual hypothese§Y, Z) 1L X, (X, Z) L Y,or(X,Y) L Z, or for total independence testing,

3In general, however, this approach would require some dace se.g.,.X andY could be measured on
very different scales, and the choice of kernelsnd/ needs to take this into account.



i.e.,Pxyz = Px Py Pz, asitvanishes in all of these cases. The null distributiwahen each of these
hypotheses can be estimated using a standard permutasaa-lapproach described in Appendix
D.

Another way to obtain the Lancaster interaction statistias the RKHS norm of the joint “cen-
tral moment’YXxy 7 = Exyz[(kx — ux) ® (ly — py) ® (mz — pz)] of RKHS-valued random
variablesky, Iy andmz (understood as an element of the tensor RKMS® H; ® H,,). Thisis
related to a classical characterization of the Lancasteraotion [21, Ch. XIlI]: there is no Lancaster
interaction betweelX, Y andZ if and only if cov[f(X), g(Y), h(Z)] = 0 for all L, functionsf, ¢
andh. There is an analogous result in our case (proof is given ipefadix A), which states

Proposition 4. |ALP|;0i0m = 0 if and only if coMf(X),g(Y),h(Z)] = 0 for all f € Hy,
g€ Hi,h € Hpy.

And finally, we give an estimator of the RKHS norm of the totalépendence measuie,,; P.

Proposition 5 (Total independence)Let A, P = Pxy 7 — Px Py P,. Then:
2

) 1 2 1
HAtOtP = E(KOLOM)++_ HtT(K+OL+OM+)+$K++L++M++.

kQI®@m

The proof follows simply from reading off the correspondinger-product V-statistics from the
Table 2. While the test statistic for total independenceshssmewhat more complicated form than
that of Lancaster interaction, it can also be computed imrata time.

4.3 Interactionfor D > 3

Streitberg’s correction of the interaction measureffor- 3 has the form
AsP = (=)= |z = DI P, ®)

™
where the sum is taken over all partitions of the{de®, . . ., n}, |r| denotes the size of the partition
(number of blocks), and,. : P — P, is thepartition operatoron probability measures, which for
a fixed partitiont = 71 |m2| ... |m, maps the probability measure to the product measurg, =
]_[;:1 Py, , wherePy is the marginal distribution of the subvectoX; : i € 7;). The coefficients
correspond to the Mobius inversion on the partition lattid4]. While the Lancaster interaction
has an interpretation in terms of joint central momentsiterg’s correction corresponds to joint

cumulants [22, Section 4]. Therefore, a central momentesgion likeEx, . x, [(kgf — Mxl) &

e ® (kﬁ?j — Mxn)] does not capture the correct notion of the interaction nreasthus, while

one can in principle construct RKHS embeddings of higheleointeraction measures, and compute
RKHS norms using a calculus bf-statistics and Gram-matrices analogous to that of Tabtel@des
not seem possible to avoid summing over all partitions wheenputing the corresponding statistics,
yielding a computationally prohibitive approach in generfais can be viewed by analogy with the
scalar case, where it is well known that the second and thindutants coincide with the second
and third central moments, whereas the higher order curtsube neither moments nor central
moments, but some other polynomials of the moments.

4.4 Total independence forD > 3

In general, the test statistic for total independence in¥hariable case is

D 2 n n D n D n
. . 1 i 2 i
Pr-T1Px R N | L o Do
i=1 ®£3:1 k(i) a=1b=11=1 a=1i=1b=1
1 D n n ;
+ o [[D0D K.
i=1a=1 b=1

A similar statistic for total independence is discussed 2] vhere testing of total independence
based on empirical characteristic functions is consideBed test has a direct interpretation in terms
of characteristic functions as well, which is straightfardto see in the case of translation invariant
kernels on Euclidean spaces, using their Bochner repiagamtsimilarly as in [28, Corollary 4].



Marginal independence tests: Dataset A

Marginal independence tests: Dataset B
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Figure 1: Two-variable kernel independence tests and 8iéde(X,Y) 1 Z using the Lancaster
statistic

Total independence test: Dataset A

Total independence test: Dataset B
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5 Experiments

We investigate the performance of various permutationdéests that use the Lancaster statistic

112 NIt

HALPH and the total independence statis#'mtotPH on two synthetic datasets where
k@l@m ) . | CMElem

X, Y andZ are random vectors of increasing dimensionality:

Dataset A: Pairwise independent, mutually dependent data.Our first dataset is a triplet of

random vector§X,Y, Z) on RP x RP x R?, with X,Y "% A(0,1,), W ~ Exp(\/%),
Zy = sign(X1Y1)W, and Z,., ~ N(0,1,1), i.e., the product ofX;Y; determines the sign of
Z,, while the remaining — 1 dimensions are independent (and serve as noise in this éxgmp
In this case(X,Y, Z) is clearly a pairwise independent but mutually dependgsietr The mutual

dependence becomes increasingly difficult to detect asithergionalityp increases.
Dataset B: Joint dependence can be easier to detedn this example, we consider a triplet of
random vector§X, Y, Z) onRP x RP x RP, with X, Y “%" N(0, 1)), Zs., ~ N'(0,1,_1), and
X% 4, w.p. 1/3,
7y =_ Y& +e¢, w.p. 1/3,
X1Y1+e€ w.p.1/3,

wheree ~ N(0,0.1%). Thus, dependence &f on pair(X,Y) is stronger than o andY individ-
ually.

“Note that there is no reason faf, Y andZ to have the same dimensionaljy this is done for simplicity
of exposition.



V-structure discovery: Dataset A V-structure discovery: Dataset B
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Figure 3: Factorization hypothesis: Lancaster statisticastwo-variable based test; Test for I
Y'|Z from [18]

In all cases, we use permutation tests as described in AppBnd he test level is set ta = 0.05,

and we use gaussian kernels with bandwidth set to the iritérptedian distance. In Figure 1,
we plot the null hypothesis acceptance rates of the staridarel two-variable tests foak I Y
(which is true for both datasets A and B, and accepted at threctaate across all dimensions) and
for X 1 Z (which is true only for dataset A), as well as of the standanch&l two-variable test for
(X,Y) L Z, and the test fofX,Y) 1L Z using the Lancaster statistic. As expected, in dataset B,
we see that dependence Bfon pair(X,Y') is somewhat easier to detect than &nindividually

with two-variable tests. In both datasets, however, thechater interaction appears significantly
more sensitive in detecting this dependence as dimengippahcreases. Figure 2 plots the Type Il

2 ~ 112
andHAtotPH . The Lancaster
- ) Eelem k@l@m
statistic outperforms the total independence statiscyavhere apart from the Dataset B when the

number of dimensions is small (between 1 and 5). Figure 3l Type Il error of the factor-
ization test, i.e., testfotX,Y) L Z v (X,Z) L Y v (Y,Z) L X with Lancaster statistic
with Holm-Bonferroni correction as described in Appendixd3 well as the two-variable based test
(which performs three standard two-variable tests andeptiie Holm-Bonferroni correction). We
also plot the Type Il error for the conditional independetest for X I Y'|Z from [18]. Under
assumption thak’ I Y (correct on both datasets), negation of each of these ttyetlieses is
equivalent to the presence of V-structufe— Z <« Y, so the rejection of the null can be viewed
as a V-structure detection procedure. As dimensionalityeases, the Lancaster statistic appears
significantly more sensitive to the interactions preseantthe competing approaches, which is par-
ticularly pronounced in Dataset A.

error of total independence tests with statis“(z:‘sLPH

6 Conclusions

We have constructed permutation-based nonparametricfashree-variable interactions, includ-
ing the Lancaster interaction and total independence. @sts tan be used in datasets where only
higher-order interactions persist, i.e., variables aipnpse independent; as well as in cases where
joint dependence may be easier to detect than pairwise depee, for instance when the effect of
two variables on a third is not additive. The flexibility ofetfiramework of RKHS embeddings of
signed measures allows us to consider variables that arestiees multidimensional. While the to-
tal independence case readily generalizes to more thamdimensions, the combinatorial nature of
joint cumulants implies that detecting interactions oft@gorder requires significantly more costly
computation.

References
[1] A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Biging statistical dependence with Hilbert-
Schmidt norms. IALT, pages 63-78, 2005.

[2] G. Székely, M. Rizzo, and N.K. Bakirov. Measuring andtieg dependence by correlation of distances.
Ann. Stat.35(6):2769-2794, 2007.



(3]

(4]
(5]

(6]
(7]

D. Sejdinovic, A. Gretton, B. Sriperumbudur, and K. Fukiau. Hypothesis testing using pairwise dis-
tances and associated kernelsI@L, 2012.

F. R. Bach and M. I. Jordan. Kernel independent compoagatysis.J. Mach. Learn. Res3:1-48, 2002.
K. Fukumizu, F. Bach, and A. Gretton. Statistical cotesiey of kernel canonical correlation analysls.
Mach. Learn. Res8:361-383, 2007.

J. Dauxois and G. M. Nkiet. Nonlinear canonical analysig independence testsan. Stat.26(4):1254—
1278, 1998.

D. Pal, B. Poczos, and Cs. Szepesvari. Estimation ofirenyropy and mutual information based on
generalized nearest-neighbor graphsNIRS 23 2010.

[8] A.Kankainen.Consistent Testing of Total Independence Based on the Eaigharacteristic Function

9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
130]
[31]
[32]
[33]
[34]

[35]
[36]

PhD thesis, University of Jyvaskyla, 1995.
S. Bernstein.The Theory of ProbabilitiesGastehizdat Publishing House, Moscow, 1946.

M. Kayano, I. Takigawa, M. Shiga, K. Tsuda, and H. Mamiia. Efficiently finding genome-wide three-
way gene interactions from transcript- and genotype-dgisinformatics 25(21):2735-2743, 2009.

N. Meinshausen and P. Buhlmann. High dimensional gsagtd variable selection with the lasstnn.
Stat, 34(3):1436-1462, 2006.

P. Ravikumar, M.J. Wainwright, G. Raskutti, and B. Yu.ightdimensional covariance estimation by
minimizing ¢ -penalized log-determinant divergendgectron. J. Staf.4:935-980, 2011.

J. Pearl.Causality: Models, Reasoning and Inferen@ambridge University Press, 2001.
P. Spirtes, C. Glymour, and R. Schein€ausation, Prediction, and SearcBnd edition, 2000.

M. Kalisch and P. Buhlmann. Estimating high-dimensibdirected acyclic graphs with the PC algorithm.
J. Mach. Learn. Res8:613-636, 2007.

X. Sun, D. Janzing, B. Scholkopf, and K. Fukumizu. Akelrbased causal learning algorithm.GML,
pages 855-862, 2007.

R. Tillman, A. Gretton, and P. Spirtes. Nonlinear diegtacyclic structure learning with weakly additive
noise models. INIPS 22 2009.

K. Zhang, J. Peters, D. Janzing, and B. Schoelkopf. &ebased conditional independence test and
application in causal discovery. WAI, pages 804-813, 2011.

A. Gretton, K. Fukumizu, C.-H. Teo, L. Song, B. Schgtkpand A. Smola. A kernel statistical test of
independence. INIPS 2Q pages 585-592, Cambridge, MA, 2008. MIT Press.

K. Fukumizu, A. Gretton, X. Sun, and B. Scholkopf. Kelmeasures of conditional dependence. In
NIPS 20 pages 489-496, 2008.

H.O. LancasterThe Chi-Squared DistributionWiley, London, 1969.
B. Streitberg. Lancaster interactions revisitéan. Stat. 18(4):1878-1885, 1990.

K. Fukumizu, B. Sriperumbudur, A. Gretton, and B. Sdkopf. Characteristic kernels on groups and
semigroups. INNIPS 21 pages 473-480, 2009.

A. Kankainen.Consistent Testing of Total Independence Based on the Ealgdharacteristic Function
PhD thesis, University of Jyvaskyla, 1995.

A. Berlinet and C. Thomas-AgnanReproducing Kernel Hilbert Spaces in Probability and Stiats
Kluwer, 2004.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. kukizu. Equivalence of distance-based and
RKHS-based statistics in hypothesis testing. arXiv:18076, 2012.

B. Sriperumbudur, K. Fukumizu, and G. Lanckriet. Umaadity, characteristic kernels and rkhs embed-
ding of measures]). Mach. Learn. Res12:2389-2410, 2011.

B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriend B. Scholkopf. Hilbert space embeddings
and metrics on probability measures.Mach. Learn. Res11:1517-1561, 2010.

A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, and@mola. A kernel two-sample tesi. Mach.
Learn. Res.13:723-773, 2012.

G. Székely and M. Rizzo. Testing for equal distribngan high dimension.InterStat (5), November
2004.

L. Baringhaus and C. Franz. On a new multivariate twansie test.J. Multivariate Anal, 88(1):190-206,
2004.

G. Székely and M. Rizzo. Brownian distance covariarfeen. Appl. Stat.4(3):1233-1303, 2009.
R. Serfling.Approximation Theorems of Mathematical Statistidéley, New York, 1980.

T.P. Speed. Cumulants and partition latticAsstral. J. Statist.25:378-388, 1983.

S. Holm. A simple sequentially rejective multiple t@sbcedure Scand. J. Statist6(2):65-70, 1979.

A. Gretton, K. Fukumizu, Z. Harchaoui, and B. Sriperurdbr. A fast, consistent kernel two-sample test.
In NIPS 22 Red Hook, NY, 2009. Curran Associates Inc.



Appendix to “A Kernel Test for Three-Variable Interactions ”, NIPS 2013
Dino Sejdinovic, Arthur Gretton, Wicher Bergsma
A Proofs

A.1 Proof of Proposition 2

Some basic matrix algebra used in this proof is reviewed ipefyglix F. The proof of the following
simple Lemma directly follows from the results therein.

Lemma 6. The following equalities hold:
1 (KyoLyoM),, =(KloLioM),  =tr(KioLioM) =3 KotLosMar
2. (KJroLoMI)JFJr =(KLM), |

Now, we will take a kernel matri/ and consider its Hadamard product witho L:

-~ 1
KoLoM = KoLoM—— KOLJroM—i—KoLIoM—l—KJroLoM—i-KIoLoM
n

A AT B BT

1
+ E(K++LOM+L++KOM)

1

n2

KyoLioM+K]oL{oM+K oL oM+K/oLyoM

c cT D DT

1 1
— $K++[L+OM+LIOM:|—$L++|:K+OM+KIOM]

1
+ —4K++L++M.
n
and thus:

(KOioM)++ = (KOLOM)JFJF—%((KOM)L—i—(LO]\/[)K)JrJr

1
T3 (Kt (Lo M)yy + Ly (K oM)yy]
2
n?

2
) (K (LM), + Ly (KM) 4]

[tr(K4 oLy oMy)+ (LMK), ]

1
+ Ky Ly M.

n
where we used thatly, = ((KoM)oLy),, = ((KoM)L), . ,and similarly By, =
((L [¢] M) K)++ . AISO, C++ = tT(K+ [¢] L+ [¢] M+) andD++ = (LMK)++
By comparing to the table of V-statistics, we obtain that:
1
n?

(KOEOM) = HA(Z)PHQ

++ k®@l@m

WhereA(z)P = Pxy 2+ Px Py Py — Py 7 Px — Px Py, which completes the proof of Proposition

2. Proposition 3 can be proved in an analogous way by incfyitie additional terms corresponding

to centering ofM/, i.e., (f{ oLo M+) and (f{ oLo M++) . In the next Section, however,
++

++
we give an alternative proof which gives more insight inte tble that the centering of each Gram

matrix plays.

10



A.2 Proof of Proposition 3

It will be useful to introduce into notation the kernel caetat a probability measute given by:
ky(z,2') = k(z,2') +//k(w,w’)du(w)du(w) — / (k(z,w) + k(z',w)] dv(w),  (6)

Note that/ ky(z,2)dv(z)dv(z') =0, i.e.,pug (v) =0.

By expanding the population expression of the kernel northefoint under the kernels centered
at the marginals, we obtain:

2
”PXYZ H];PX ®iPy ®mp,

_ / / [ (2,2l (4,9 i, (2, 2)]

dPxy z(x,y,2)dPxyz(x',y', 2"),
Substituting the definition of the centered kernel in (6)s iteadily obtained that

2 2
1PxyzllE,, 0ipy ome, = IALPlkgiomn -

2 . . . . 2
Now, HPXYZH;;PX Oipy @ip, IS the first term in the expansion QﬁLPH,;PX Dipy @py " Let us
show that all the other terms are equal to zero. Indeed,albther terms are of the form

<<PWQ) Q/>>kPX ®ZPY ®ritpy, !

whereWW = X, Y, or Z (individual variable). Without loss of generality, [B8f = X. Then,

(PXQQky iy i,

/// kpy (z,2")lpy (4,9 )p, (2, 2')

dPX( )dQ(y7 )dQ (‘T Y azl)

:///I;PX(x,xl)dPX(I)ZPy(yay/)mpz(zvzl)

=[P (210
dQ(y, 2)dQ'(z',y', 2")

=0.
Therefore,

2 2
||ALP||1;PX®iPY®mPZ = ”PXYZH;}PXQ@ZPY@mPZ

= ”ALPHi®l®m .
The above is true for any joint distributid?p(yz, and in particular for the empirical joint, whereby:

2

k®lom fc,aX ®lp, @mp,

- E(KOEOM)H.

A.3 Proof of Proposition 4

Consider the element 6{; ® H; ® H,, given byExy zk(-, X) @ I(-,Y) ® m(-, Z). This can be
identified with a Hilbert-Schmidt uncentered covarianceraporC xyz : Hr @ Hi — Hn, SUCh
thatVf € Hi,g € Hi,h € Hpn:

(Covzlf®gl h),, = Exvzf(X)g(¥V)h(Z).
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Table 3:V-statistics for various hypotheses

| hypothesis | V-statistic | hypothesis | V-statistic |
(X,Y) L2z ﬁ(KoLoM)++ Ax)P=0 ﬁ(KoioM)++
(X,Z) LY n—lz(Kof‘oI\f{)++ Ay)P=0 n—lz(koLoM)++
(v,Z) L X ﬁ(f(oLo]W)JrJr AP =0 ﬁ(RoioM)++
ALP =0 n—lz(koiosz)++

By replacingk, I, m with kernels centered at the marginals, we obtain a centenegtiance operator
Y (xvy)z, for which

(Sxvzlf@glh), = Exyzf(X)g(Y)h(Z)
cov[f(X),g(Y),n(Z)],

where we wrotef (X) = f(X) — Ef(X), and similarly forg andh. Using the usual isometries
between Hilbert-Schmidt spaces and the tensor producéspac

1Boen 2l

- HEXYZIE‘PX(nX)®l~Py(nY)®mpz("Z)‘2

HiQHQHm
2
= 1Pxvzlls, eip, emp,
2
= HALPHk@l@m :

Now, consider the supremum of the three-way covariancentaker the unit balls of respective
RKHSs:

fSL'lIZ COV[f(X)7 g(Y)7 h(Z)] = ?U-l:})L <E(XY)Z [f by g] ) h>'Hm

= S;lpHE(XY)Z [f®9]HHm
1,9
< S Y F
< 3w [P zFlly,
= [Pomzll,, < [Zanzlas-
and thus,||[ALP|,0i0m = 0 implies sup; ,, cov[f(X),g(Y),h(Z)] = 0. Conversely, if

cov[f(X),g9(Y),h(Z)] =0Vf,g,h, theny xy)z [f ® g] = 0Vf, g,sothe linear operatdi xy)z
vanishes.

B The effect of centering

In a two-variable test, either or both of the kernel matricas be centered when computing the test

statistic since(K o E) = (f( o L) = (f( o f;) . To see this, simply note that by the
_ ++ ++ ++
idempotence off,

(K 0 fi) . = t(KHLH)

= tr(KH?LH?)
= tr(HKH?LH)
(HKHoHLH), |

_ (Koi)++. @)
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Table 4: An example of Lancaster interaction measure vanishinghiercase where neither variable is inde-
pendent of the other two.

===
Naw! Nl | Nawl N
Il

| 9| | T
HED»—KO
L2 L e
| ===

This is no longer true in the three-variable case, whereeceng of each matrix has a different
meaning. Various hypotheses and their correspondingtistta are summarized in Table 3. Note
that the “composite” hypotheses are obtained simply by @nagiate centering of Gram matrices.

C AP=0-XY)LZV(X,Z)LY Vv (Y,Z)LX.

Consider the following simple example with binary variaglg, Y, Z with the2 x 2 x 2 probability
table given in Table 4. Itis readily checked that all coratiil covariances are equal, Ag, P = 0.

It is also clear, however, that neither variable is indegenaf the other two. Therefore, a test for
Lancaster interactioper seis not equivalent to testing for the possibility of any fattation of the
joint distribution, but our empirical results suggest tihaan nonetheless provide a useful surrogate.
In other words, while rejection of the null hypothegig P = 0 is highly informative and implies
that interaction is present amb non-trivial factorization of the joint distribution is alable, the
acceptance of the null hypothesis should be considereéutlgrand additional methods to rule out
interaction should be sought.

D Permutation test

A permutation test for total independence is easy to coastiiti suffices to compute the value

~ 112
of the statistic (either the Lancaster statisHiALPH or the total independence statistic

kQI®m
‘ ) on {(X®,yd z@0)L" | for randomly drawn independent permutations
o,TES, |n order to obtain a sample from the null distribution.

When testing foronly oneof the hypothese$§Y, 7Z) L X, (X,Z) L Y, or (X,Y) L Z, ei-
ther with a Lancaster statistic or with a standard two-\@eaernel statistic, only one of the
samples should be permuted e.g., if testing(@rz) L X, statistics should be computed on
{(xD,y® z@)}"  foro € S,. However, when testing for the disjunction of these hy-
potheses, i. e for the exrstence of a nontrivial factaidraof the joint distribution, we are within
a multiple hypothe5|s testing framework (even though ong deal with a single test statistic, as
in the Lancaster case). To ensure that the required conéidemela = 0.05 is reached for the
factorization hypothesis, in the experiments reportediguie 3, the Holm’s sequentially rejective
Bonferroni method [35] is used for both the two-variabledzhand for the Lancaster based factor-
ization tests. Namely)-values are computed for each of the hypotheses’) L X, (X,Z) LY,

or (X,Y) L Z using the permutation test, and sorted in the ascending p[dep (2), P3)- Hy-
potheses are then rejected sequentially;if < ;=;. The factorization hypothesis is then rejected if
and only if all three hypotheses are rejected

E Asymptotic behavior

Using terminology from [26], kernels and %’ are said to be equivalent if they induce the same
semimetric on the domain, i.é(x, z) + k(2/,2’) — 2k(z,2") = K'(z,2) + k' (2', ') — 2K (z, ")
Va,2’. It can be shown that the Lancaster statistic is invarianhnging kernels within the kernel
equivalence class, i.e., that

2 2

faur

- Jaus

kQl®m kol @m!
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wheneverk, £/, [, 1’ andm, m’ are equivalent pairs. From here,
2 2

’ALP

- s

k@LOm kpy ®lpy @mp,
In Section A.2, we were able to show a similar expression bly for changingk to its version

kp, . centered at thempirical marginal Now, under the assumption of total independence, i.et, tha
2 2

Pxyz = Px Py Pz, the dominating term irHALP is || Pxy #

3 .B
i k?x Qlpy @ﬁ”?z i . kpy ®lpy @Thpz Y
standard arguments, under total independence, this agewer distribution to a sum of independent
chi-squared variables,

oo

AanbecNgbca (8)
=1

: -3y

kpy ®ZPY ®mp, mlb—l e

Pxvyz

n

where{\.}, {m}, {0} are, respectively, eigenvalues of integral operatorsciasal tokp, , [p,
.. ~ 112
andmp,, and Ny, i N(0,1). Other terms inHALP )

; can be shown to drop
. . ki Olpy @iy,

to zero at a faster rate, as in the two-variable case. Thétirgsudlistribution of such a sum of
chi-squares can, in principle, be estimated using a Monte@aethod, by computing a number

of eigenvalues of<, L and M, as in [36, 18]. This is of little practical value though, assiin
most cases simpler and faster to run a permutation test, deseeibe in Appendix D. On the other
hand, the above result quantifies the highest order of bitkeedd-statistic under total independence
to be equal toX 32 A, Sp2 S0, 6., which can be estimated ak Tr(K)Tr(L)Tr(M).
We emphasize that (8) refers tanall distribution under total independenedf say, the null holds
becauséX,Y) 1 Z, butX andY are dependent, one needs to instead consider a keriébopy
centered aPxy and the eigenvalues of its integral operator then replage, } (triple sum becomes
a double sum). This also implies that the bias term needs totvected appropriately.

F Some useful basic matrix algebra

Lemma 7. Let A, B ben x n matrices. The following results hold:
1.1T1=n

2. [117);; =1, ¥i,j,and thus(11 ") = n?

3. (I—Li11m)? = 7— 11T,

4. [A1], = Ay, [1TA]J. = Ay
5.1TA1=A4,,

6. (A117), = (1174)  =ndAy
7. (aA+BB),, =adiy + BBy
8. (A117B), = AyByy.

Proof. (3):

[ ? 2T 1 T44T
(I——ll ) = I--11"+S11'11".
n n ns ~~~

(8): From (4),[A117 B] .. = A; B, ;, implying

j

(AllTB)++ = Z Ai+ Z B+J = A++B++.

i=1 j=1

14



Now, let K be a symmetric matrix, and dendte= I — %11T (the centering matrix). Then:

1 1
HKH = (I - —11T> K (I — —11T>

n n

_ K- (k. 4+ kT L K T

= _ﬁ( ++ +)+ﬁ 44110,

Note that:
1 T 1 T
(HKH), | = Ki- n ((K+)++ + (K+)++) + §K++ (11 )++

= K. —2K,, +K,, =0.
Lemma 8. The following results hold:

1. Ao11T =11To A=A
. (IoA)  =tr(A)

N

. (AoB), , = tr(ABT)

W

. For a symmetric matri¥ and any matrix4, (Ao K), = (AK)
(KA),

AOKI)+

e ( + =

5. For symmetric matrice&’, L, (Ko Ly),, = (K{ oL}), =n(KL),
6. For symmetric matrice&, L, (K o L]), = (KoL), ==K Ly

Proof. (4):(Ao Ky),, = tr(AK11") = (AKo117), = (AK), . (5): (KyoLy), , =

(K+L)++=(11TKL)++:n(KL)++. O
Proposition 9. DenoteH = I — %llT. Then:
2 1
(.KVO.[’ILITI)JrJr = (KOL)++—E(KL)+++§K++L++.
Proof. Let K and L be symmetric matrices and considéro H L H. \We obtain:
1 1
KoHLH = Ko <L ——(Le+L)+ —2L++11T>
n n
1 1
= KoL——(KoLy+KoLj)+—LK,
n n
so that:
2 1
(.KVO.[’ILITI)JrJr = (KOL)++—E(KL)+++§K++L++.
O

Corollary 10. tr(HLH) =tr(L) — L,
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