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We provide a unifying framework linking two classes of statistics used in
two-sample and independence testing: on the one hand, the energy distances
and distance covariances from the statistics literature; on the other, maxi-
mum mean discrepancies (MMD), that is, distances between embeddings of
distributions to reproducing kernel Hilbert spaces (RKHS), as established in
machine learning. In the case where the energy distance is computed with a
semimetric of negative type, a positive definite kernel, termed distance ker-
nel, may be defined such that the MMD corresponds exactly to the energy
distance. Conversely, for any positive definite kernel, we can interpret the
MMD as energy distance with respect to some negative-type semimetric. This
equivalence readily extends to distance covariance using kernels on the prod-
uct space. We determine the class of probability distributions for which the
test statistics are consistent against all alternatives. Finally, we investigate the
performance of the family of distance kernels in two-sample and indepen-
dence tests: we show in particular that the energy distance most commonly
employed in statistics is just one member of a parametric family of kernels,
and that other choices from this family can yield more powerful tests.

1. Introduction. The problem of testing statistical hypotheses in high dimen-
sional spaces is particularly challenging, and has been a recent focus of consid-
erable work in both the statistics and the machine learning communities. On the
statistical side, two-sample testing in Euclidean spaces (of whether two indepen-
dent samples are from the same distribution, or from different distributions) can be
accomplished using a so-called energy distance as a statistic [Székely and Rizzo
(2004, 2005), Baringhaus and Franz (2004)]. Such tests are consistent against all
alternatives as long as the random variables have finite first moments. A related
dependence measure between vectors of high dimension is the distance covari-
ance [Székely, Rizzo and Bakirov (2007), Székely and Rizzo (2009)], and the re-
sulting test is again consistent for variables with bounded first moment. The dis-
tance covariance has had a major impact in the statistics community, with Székely
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and Rizzo (2009) being accompanied by an editorial introduction and discussion.
A particular advantage of energy distance-based statistics is their compact repre-
sentation in terms of certain expectations of pairwise Euclidean distances, which
leads to straightforward empirical estimates. As a follow-up work, Lyons (2013)
generalized the notion of distance covariance to metric spaces of negative type (of
which Euclidean spaces are a special case).

On the machine learning side, two-sample tests have been formulated based
on embeddings of probability distributions into reproducing kernel Hilbert spaces
[Gretton et al. (2007, 2012a)], using as the test statistic the difference between
these embeddings: this statistic is called the maximum mean discrepancy (MMD).
This distance measure was also applied to the problem of testing for independence,
with the associated test statistic being the Hilbert–Schmidt independence criterion
(HSIC) [Gretton et al. (2005, 2008), Smola et al. (2007), Zhang et al. (2011)].
Both tests are shown to be consistent against all alternatives when a characteristic
RKHS is used [Fukumizu et al. (2009), Sriperumbudur et al. (2010)].

Despite their striking similarity, the link between energy distance-based tests
and kernel-based tests has been an open question. In the discussion of [Székely
and Rizzo (2009), Gretton, Fukumizu and Sriperumbudur (2009), page 1289] first
explored this link in the context of independence testing, and found that interpret-
ing the distance-based independence statistic as a kernel statistic is not straight-
forward, since Bochner’s theorem does not apply to the choice of weight function
used in the definition of the distance covariance (we briefly review this argument
in Section 5.3). Székely and Rizzo (2009), Rejoinder, page 1303, confirmed that
the link between RKHS-based dependence measures and the distance covariance
remained to be established, because the weight function is not integrable. Our con-
tribution resolves this question, and shows that RKHS-based dependence measures
are precisely the formal extensions of the distance covariance, where the prob-
lem of nonintegrability of weight functions is circumvented by using translation-
variant kernels, that is, distance-induced kernels, introduced in Section 4.1.

In the case of two-sample testing, we demonstrate that energy distances are
in fact maximum mean discrepancies arising from the same family of distance-
induced kernels. A number of interesting consequences arise from this insight:
first, as the energy distance (and distance covariance) derives from a particular
choice of a kernel, we can consider analogous quantities arising from other kernels,
and yielding more sensitive tests. Second, in relation to Lyons (2013), we obtain a
new family of characteristic kernels arising from general semimetric spaces of neg-
ative type, which are quite unlike the characteristic kernels defined via Bochner’s
theorem [Sriperumbudur et al. (2010)]. Third, results from [Gretton et al. (2009),
Zhang et al. (2011)] may be applied to obtain consistent two-sample and indepen-
dence tests for the energy distance, without using bootstrap, which perform much
better than the upper bound proposed by Székely, Rizzo and Bakirov (2007) as an
alternative to the bootstrap.
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In addition to the energy distance and maximum mean discrepancy, there are
other well-known discrepancy measures between two probability distributions,
such as the Kullback–Leibler divergence, Hellinger distance and total variation
distance, which belong to the class of f -divergences. Another popular family
of distance measures on probabilities is the integral probability metric [Müller
(1997)], examples of which include the Wasserstein distance, Dudley metric and
Fortet–Mourier metric. Sriperumbudur et al. (2012) showed that MMD is an inte-
gral probability metric and so is energy distance, owing to the equality (between
energy distance and MMD) that we establish in this paper. On the other hand,
Sriperumbudur et al. (2012) also showed that MMD (and therefore the energy dis-
tance) is not an f -divergence, by establishing the total variation distance as the
only discrepancy measure that is both an IPM and f -divergence.

The equivalence established in this paper has two major implications for prac-
titioners using the energy distance or distance covariance as test statistics. First,
it shows that these quantities are members of a much broader class of statistics,
and that by choosing an alternative semimetric/kernel to define a statistic from this
larger family, one may obtain a more sensitive test than by using distances alone.
Second, it shows that the principles of energy distance and distance covariance
are readily generalized to random variables that take values in general topological
spaces. Indeed, kernel tests are readily applied to structured and non-Euclidean
domains, such as text strings, graphs and groups [Fukumizu et al. (2009)].

The structure of the paper is as follows: in Section 2, we introduce semimetrics
of negative type, and extend the notions of energy distance and distance covariance
to semimetric spaces of negative type. In Section 3, we provide the necessary def-
initions from RKHS theory and give a review of the maximum mean discrepancy
(MMD) and the Hilbert–Schmidt independence criterion (HSIC), the RKHS-based
statistics used for two-sample and independence testing, respectively. In Section 4,
the correspondence between positive definite kernels and semimetrics of negative
type is developed, and it is applied in Section 5 to show the equivalence between a
(generalized) energy distance and MMD (Section 5.1), as well as between a (gen-
eralized) distance covariance and HSIC (Section 5.2). We give conditions for these
quantities to distinguish between probability measures in Section 6, thus obtaining
a new family of characteristic kernels. Empirical estimates of these quantities and
associated two-sample and independence tests are described in Section 7. Finally,
in Section 8, we investigate the performance of the test statistics on a variety of
testing problems.

This paper extends the conference publication [Sejdinovic et al. (2012)], and
gives a detailed technical discussion and proofs which were omitted in that work.

2. Distance-based approach. This section reviews the distance-based ap-
proach to two-sample and independence testing, in its general form. The gener-
alized energy distance and distance covariance are defined.



2266 SEJDINOVIC, SRIPERUMBUDUR, GRETTON AND FUKUMIZU

2.1. Semimetrics of negative type. We will work with the notion of a semi-
metric of negative type on a nonempty set Z , where the “distance” function need
not satisfy the triangle inequality. Note that this notion of semimetric is different
to that which arises from the seminorm (also called the pseudonorm), where the
distance between two distinct points can be zero.

DEFINITION 1 (Semimetric). Let Z be a nonempty set and let ρ : Z × Z →
[0,∞) be a function such that ∀z, z′ ∈ Z ,

1. ρ(z, z′) = 0 if and only if z = z′, and
2. ρ(z, z′) = ρ(z′, z).
Then (Z, ρ) is said to be a semimetric space and ρ is called a semimetric on Z .

DEFINITION 2 (Negative type). The semimetric space (Z, ρ) is said to have
negative type if ∀n ≥ 2, z1, . . . , zn ∈ Z , and α1, . . . , αn ∈ R, with

∑n
i=1 αi = 0,

n∑
i=1

n∑
j=1

αiαjρ(zi, zj ) ≤ 0.(2.1)

Note that in the terminology of Berg, Christensen and Ressel (1984), ρ satisfy-
ing (2.1) is said to be a negative definite function. The following proposition is
derived from Berg, Christensen and Ressel (1984), Corollary 2.10, page 78, and
Proposition 3.2, page 82.

PROPOSITION 3.

1. If ρ satisfies (2.1), then so does ρq , for 0 < q < 1.
2. ρ is a semimetric of negative type if and only if there exists a Hilbert space

H and an injective map ϕ : Z → H, such that

ρ
(
z, z′) = ∥∥ϕ(z) − ϕ

(
z′)∥∥2

H.(2.2)

The second part of the proposition shows that (Rd,‖ ·− ·‖2) is of negative type,
and by taking q = 1/2 in the first part, we conclude that all Euclidean spaces are
of negative type. In addition, whenever ρ is a semimetric of negative type, ρ1/2

is a metric of negative type, that is, even though ρ may not satisfy the triangle
inequality, its square root must do if it obeys (2.1).

2.2. Energy distance. Unless stated otherwise, we will assume that Z is any
topological space on which Borel measures can be defined. We will denote by
M(Z) the set of all finite signed Borel measures on Z , and by M1+(Z) the set of
all Borel probability measures on Z .

The energy distance was introduced by Székely and Rizzo (2004, 2005) and
independently by Baringhaus and Franz (2004) as a measure of statistical distance
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between two probability measures P and Q on R
d with finite first moments, given

by

DE(P,Q) = 2EZW‖Z − W‖2 − EZZ′
∥∥Z − Z′∥∥

2 − EWW ′
∥∥W − W ′∥∥

2,(2.3)

where Z,Z′ i.i.d.∼ P and W,W ′ i.i.d.∼ Q. The moment condition is required to ensure
that the expectations in (2.3) is finite. DE(P,Q) is always nonnegative, and is
strictly positive if P �= Q. In scalar case, it coincides with twice the Cramér–Von
Mises distance.

Following Lyons (2013), the notion can be generalized to a metric space of
negative type, which we further extend to semimetrics. Before we proceed, we
need to first introduce a moment condition w.r.t. a semimetric ρ.

DEFINITION 4. For θ > 0, we say that ν ∈ M(Z) has a finite θ -moment
with respect to a semimetric ρ of negative type if there exists z0 ∈ Z , such that∫

ρθ(z, z0) d|ν|(z) < ∞. We denote

Mθ
ρ(Z) =

{
ν ∈ M(Z) :∃z0 ∈ Z s.t.

∫
ρθ(z, z0) d|ν|(z) < ∞

}
.(2.4)

We are now ready to introduce a general energy distance DE,ρ .

DEFINITION 5. Let (Z, ρ) be a semimetric space of negative type, and let
P,Q ∈ M1+(Z) ∩ M1

ρ(Z). The energy distance between P and Q, w.r.t. ρ is

DE,ρ(P,Q) = 2EZWρ(Z,W) − EZZ′ρ
(
Z,Z′) − EWW ′ρ

(
W,W ′),(2.5)

where Z,Z′ i.i.d.∼ P and W,W ′ i.i.d.∼ Q.

If ρ is a metric, as in [Lyons (2013)], the moment condition P,Q ∈ M1
ρ(Z) is

easily seen to be sufficient for the existence of the expectations in (2.5). Namely,
if we take z0,w0 ∈ Z such that EZρ(Z, z0) < ∞, EWρ(W,w0) < ∞, then the
triangle inequality implies:

EZWρ(Z,W) ≤ EZρ(Z, z0) + EWρ(W,w0) + ρ(z0,w0) < ∞.

If ρ is a general semimetric, however, a different line of reasoning is needed,
and we will come back to this condition in Remark 21, where its sufficiency will
become clear using the link between positive definite kernels and negative-type
semimetrics established in Section 4.

Note that the energy distance can equivalently be represented in the integral
form,

DE,ρ(P,Q) = −
∫

ρ d
([P − Q] × [P − Q]),(2.6)

whereby the negative type of ρ implies the nonnegativity of DE,ρ , as discussed by
Lyons [(2013), page 10].
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2.3. Distance covariance. A related notion to the energy distance is that of
distance covariance, which measures dependence between random variables. Let
X be a random vector on R

p and Y a random vector on R
q . The distance covari-

ance was introduced by Székely, Rizzo and Bakirov (2007), Székely and Rizzo
(2009) to address the problem of testing and measuring dependence between X

and Y in terms of a weighted L2-distance between characteristic functions of the
joint distribution of X and Y and the product of their marginals. As a particular
choice of weight function is used (we discuss this further in Section 5.3), it can be
computed in terms of certain expectations of pairwise Euclidean distances,

V 2(X,Y ) = EXY EX′Y ′
∥∥X − X′∥∥

2

∥∥Y − Y ′∥∥
2

+ EXEX′
∥∥X − X′∥∥

2EY EY ′
∥∥Y − Y ′∥∥

2(2.7)

− 2EXY

[
EX′

∥∥X − X′∥∥
2EY ′

∥∥Y − Y ′∥∥
2

]
,

where (X,Y ) and (X′, Y ′) are
i.i.d.∼ PXY . As in the case of the energy distance,

Lyons (2013) established that the generalization of the distance covariance is pos-
sible to metric spaces of negative type. We extend this notion to semimetric spaces
of negative type.

DEFINITION 6. Let (X , ρX ) and (Y, ρY ) be semimetric spaces of negative
type, and let X ∼ PX ∈ M2

ρX (X ) and Y ∼ PY ∈ M2
ρY (Y), having joint distribu-

tion PXY . The generalized distance covariance of X and Y is

V 2
ρX ,ρY (X,Y ) = EXY EX′Y ′ρX

(
X,X′)ρY

(
Y,Y ′)

+ EXEX′ρX
(
X,X′)

EY EY ′ρY
(
Y,Y ′)(2.8)

− 2EXY

[
EX′ρX

(
X,X′)

EY ′ρY
(
Y,Y ′)].

As with the energy distance, the moment conditions ensure that the expectations
are finite (which can be seen using the Cauchy–Schwarz inequality). Equivalently,
the generalized distance covariance can be represented in integral form,

V 2
ρX ,ρY (X,Y ) =

∫
ρX ρY d

([PXY − PXPY ] × [PXY − PXPY ]),(2.9)

where ρX ρY is viewed as a function on (X × Y) × (X × Y). Furthermore, Lyons
(2013), Theorem 3.20, shows that distance covariance in a metric space character-
izes independence [i.e., V 2

ρX ,ρY (X,Y ) = 0 if and only if X and Y are independent]
if the metrics ρX and ρY satisfy an additional property, termed strong negative
type. The discussion of this property is relegated to Section 6.

REMARK 7. While the form of (2.6) and (2.9) suggests that the energy dis-
tance and the distance covariance are closely related, it is not clear whether
V 2

ρX ,ρY (X,Y ) is simply DE,ρ̃(PXY ,PXPY ) for some semimetric ρ̃ on X × Y .
In particular, −ρX ρY is certainly not a semimetric. This question will be resolved
in Corollary 26.
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3. Kernel-based approach. In this section, we introduce concepts and nota-
tion required to understand reproducing kernel Hilbert spaces (Section 3.1), and
distribution embeddings into RKHS. We then introduce the maximum mean dis-
crepancy (MMD) and Hilbert–Schmidt independence criterion (HSIC).

3.1. RKHS and kernel embeddings. We begin with the definition of a repro-
ducing kernel Hilbert space (RKHS).

DEFINITION 8 (RKHS). Let H be a Hilbert space of real-valued functions
defined on Z . A function k : Z × Z → R is called a reproducing kernel of H if:

1. ∀z ∈ Z, k(·, z) ∈ H, and
2. ∀z ∈ Z,∀f ∈ H, 〈f, k(·, z)〉H = f (z).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space
(RKHS).

According to the Moore–Aronszajn theorem [Berlinet and Thomas-Agnan
(2004), page 19], for every symmetric, positive definite function (henceforth ker-
nel) k : Z × Z → R, there is an associated RKHS Hk of real-valued functions on
Z with reproducing kernel k. The map ϕ : Z → Hk , ϕ : z �→ k(·, z) is called the
canonical feature map or the Aronszajn map of k. We will say that k is a nonde-
generate kernel if its Aronszajn map is injective. The notion of feature map can
be extended to kernel embeddings of finite signed Borel measures on Z [Smola
et al. (2007), Sriperumbudur et al. (2010), Berlinet and Thomas-Agnan (2004),
Chapter 4].

DEFINITION 9 (Kernel embedding). Let k be a kernel on Z , and ν ∈
M(Z). The kernel embedding of ν into the RKHS Hk is μk(ν) ∈ Hk such that∫

f (z) dν(z) = 〈f,μk(ν)〉Hk
for all f ∈ Hk .

Alternatively, the kernel embedding can be defined by the Bochner integral
μk(ν) = ∫

k(·, z) dν(z). If a measurable kernel k is a bounded function, μk(ν)

exists for all ν ∈ M(Z). On the other hand, if k is not bounded, there will always
exist ν ∈ M(Z), for which

∫
k(·, z) dν(z) diverges. The kernels we will consider

in this paper will be continuous, and hence measurable, but unbounded, so kernel
embeddings will not be defined for some finite signed measures. Thus, we need to
restrict our attention to a particular class of measures for which kernel embeddings
exist (this will be later shown to reflect the condition that random variables consid-
ered in distance covariance tests must have finite moments). Let k be a measurable
kernel on Z , and denote, for θ > 0,

Mθ
k(Z) =

{
ν ∈ M(Z) :

∫
kθ (z, z) d|ν|(z) < ∞

}
.(3.1)
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Clearly,

θ1 ≤ θ2 ⇒ Mθ2
k (Z) ⊆ Mθ1

k (Z).(3.2)

Note that the kernel embedding μk(ν) is well defined ∀ν ∈ M1/2
k (Z), by the Riesz

representation theorem.

3.2. Maximum mean discrepancy. As we have seen, kernel embeddings of
Borel probability measures in M1+(Z) ∩ M1/2

k (Z) do exist, and we can intro-
duce the notion of distance between Borel probability measures in this set using
the Hilbert space distance between their embeddings.

DEFINITION 10 (Maximum mean discrepancy). Let k be a kernel on Z , and
let P,Q ∈ M1+(Z) ∩ M1/2

k (Z). The maximum mean discrepancy (MMD) γk be-
tween P and Q is given by Gretton et al. (2012a), Lemma 4,

γk(P,Q) = ∥∥μk(P ) − μk(Q)
∥∥

Hk
.

The following alternative representation of the squared MMD [from Gretton
et al. (2012a), Lemma 6] will be useful

γ 2
k (P,Q) = EZZ′k

(
Z,Z′) + EWW ′k

(
W,W ′) − 2EZWk(Z,W)

(3.3)
=

∫ ∫
k d

([P − Q] × [P − Q]),
where Z,Z′ i.i.d.∼ P and W,W ′ i.i.d.∼ Q. If the restriction of μk to some P(Z) ⊆
M1+(Z) is well defined and injective, then k is said to be characteristic to P(Z),
and it is said to be characteristic (without further qualification) if it is characteristic
to M1+(Z). When k is characteristic, γk is a metric on the entire M1+(Z), that is,
γk(P,Q) = 0 iff P = Q, ∀P,Q ∈ M1+(Z). Conditions under which kernels are
characteristic have been studied by Fukumizu et al. (2009), Sriperumbudur et al.
(2008), Sriperumbudur et al. (2010). An alternative interpretation of (3.3) is as an
integral probability metric [Müller (1997)],

γk(P,Q) = sup
f ∈Hk,‖f ‖Hk

≤1

[
EZ∼P f (Z) − EW∼Qf (W)

]
.(3.4)

See Gretton et al. (2012a) and Sriperumbudur et al. (2012) for details.

3.3. Hilbert–Schmidt independence criterion (HSIC). The MMD can be em-
ployed to measure statistical dependence between random variables [Gretton et al.
(2005, 2008), Gretton and Györfi (2010), Smola et al. (2007), Zhang et al. (2011)].
Let X and Y be two nonempty topological spaces and let kX and kY be kernels on
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X and Y , with respective RKHSs HkX and HkY . Then, by applying Steinwart and
Christmann [(2008), Lemma 4.6, page 114],

k
(
(x, y),

(
x′, y′)) = kX

(
x, x′)kY

(
y, y′)(3.5)

is a kernel on the product space X × Y with RKHS Hk isometrically isomorphic
to the tensor product HkX ⊗ HkY .

DEFINITION 11. Let X ∼ PX and Y ∼ PY be random variables on X and Y ,
respectively, having joint distribution PXY . Furthermore, let k be a kernel on X ×
Y , given in (3.5). The Hilbert–Schmidt independence criterion (HSIC) of X and Y

is the MMD γk between the joint distribution PXY and the product of its marginals
PXPY .

Following Smola et al. (2007), Section 2.3, we can expand HSIC as

γ 2
k (PXY ,PXPY )

= ∥∥EXY

[
kX (·,X) ⊗ kY (·, Y )

] − EXkX (·,X) ⊗ EY kY (·, Y )
∥∥2

HkX ⊗HkY
(3.6)

= EXY EX′Y ′kX
(
X,X′)kY

(
Y,Y ′) + EXEX′kX

(
X,X′)

EY EY ′kY
(
Y,Y ′)

− 2EX′Y ′
[
EXkX

(
X,X′)

EY kY
(
Y,Y ′)].

It can be shown that this quantity is equal to the squared Hilbert–Schmidt norm
of the covariance operator between RKHSs [Gretton et al. (2005)]. We claim that
γ 2
k (PXY ,PXPY ) is well defined as long as PX ∈ M1

kX (X ) and PY ∈ M1
kY (Y).

Indeed, this is a sufficient condition for μk(PXY ) to exist, since it implies that
PXY ∈ M1/2

k (X × Y), which can be seen from the Cauchy–Schwarz inequality,∫
k1/2(

(x, y), (x, y)
)
dPXY (x, y)

=
∫

k
1/2

X (x, x)k
1/2

Y (y, y) dPXY (x, y)

≤
(∫

kX (x, x) dPX(x)

∫
kY (y, y) dPY (y)

)1/2

.

Furthermore, the embedding μk(PXPY ) of the product of marginals also ex-
ists, as it can be identified with the tensor product μkX (PX) ⊗ μkY (PY ), where

μkX (PX) exists since PX ∈ M1
kX (X ) ⊂ M1/2

kX (X ), and μkY (PY ) exists since

PY ∈ M1
kY (Y) ⊂ M1/2

kY (Y).

4. Correspondence between kernels and semimetrics. In this section, we
develop the correspondence of semimetrics of negative type (Section 2.1) to the
RKHS theory, that is, to symmetric positive definite kernels. This correspondence
will be key to proving the equivalence between the energy distance and MMD, and
the equivalence between distance covariance and HSIC in Section 5.
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4.1. Distance-induced kernels. Semimetrics of negative type and symmetric
positive definite kernels are closely related, as summarized in the following lemma,
adapted from Berg, Christensen and Ressel (1984), Lemma 2.1, page 74.

LEMMA 12. Let Z be a nonempty set, and ρ : Z × Z → R a semimetric on Z .
Let z0 ∈ Z , and denote k(z, z′) = ρ(z, z0)+ ρ(z′, z0)− ρ(z, z′). Then k is positive
definite if and only if ρ satisfies (2.1).

As a consequence, k(z, z′) defined above is a valid kernel on Z whenever ρ is
a semimetric of negative type. For convenience, we will work with such kernels
scaled by 1/2.

DEFINITION 13 (Distance-induced kernel). Let ρ be a semimetric of negative
type on Z and let z0 ∈ Z . The kernel

k
(
z, z′) = 1

2

[
ρ(z, z0) + ρ

(
z′, z0

) − ρ
(
z, z′)](4.1)

is said to be the distance-induced kernel induced by ρ and centred at z0.

For brevity, we will drop “induced” hereafter, and say that k is simply the dis-
tance kernel (with some abuse of terminology). Note that distance kernels are
not strictly positive definite, that is, it is not true that ∀n ∈ N, and for distinct
z1, . . . , zn ∈ Z ,

n∑
i=1

n∑
j=1

αiαjk(zi, zj ) = 0 ⇒ αi = 0 ∀i.

Indeed, if k were given by (4.1), it would suffice to take n = 1, since k(z0, z0) = 0.
By varying the point at the center z0, we obtain a family

Kρ = {1
2

[
ρ(z, z0) + ρ

(
z′, z0

) − ρ
(
z, z′)]}

z0∈Z
of distance kernels induced by ρ. The following proposition follows readily from
the definition of Kρ and shows that one can always express (2.2) from Proposi-
tion 3 in terms of the canonical feature map for the RKHS Hk .

PROPOSITION 14. Let (Z, ρ) be a semimetric space of negative type, and
k ∈ Kρ . Then:

1. ρ(z, z′) = k(z, z) + k(z′, z′) − 2k(z, z′) = ‖k(·, z) − k(·, z′)‖2
Hk

.
2. k is nondegenerate, that is, the Aronszajn map z �→ k(·, z) is injective.

EXAMPLE 15. Let Z ⊆ R
d and write ρq(z, z′) = ‖z− z′‖q . By Proposition 3,

ρq is a valid semimetric of negative type for 0 < q ≤ 2. The corresponding kernel
centered at z0 = 0 is given by the covariance function of the fractional Brownian
motion,

kq

(
z, z′) = 1

2

(‖z‖q + ∥∥z′∥∥q − ∥∥z − z′∥∥q)
.(4.2)
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Note that while Lyons [(2013), page 9] also uses the results in Proposition 3 to
characterize metrics of negative type using embeddings to general Hilbert spaces,
the relation with the theory of reproducing kernel Hilbert spaces is not exploited
in his work.

4.2. Semimetrics generated by kernels. We now further develop the link be-
tween semimetrics of negative type and kernels. We start with a simple corollary
of Proposition 3.

COROLLARY 16. Let k be any nondegenerate kernel on Z . Then,

ρ
(
z, z′) = k(z, z) + k

(
z′, z′) − 2k

(
z, z′)(4.3)

defines a valid semimetric ρ of negative type on Z .

DEFINITION 17 (Equivalent kernels). Whenever the kernel k and semimet-
ric ρ satisfy (4.3), we will say that k generates ρ. If two kernels generate the same
semimetric, we will say that they are equivalent kernels.

It is clear that every distance kernel k̃ ∈ Kρ induced by ρ, also generates ρ.
However, there are many other kernels that generate ρ. The following proposi-
tion is straightforward to show and gives a condition under which two kernels are
equivalent.

PROPOSITION 18. Let k and k̃ be two kernels on Z . k and k̃ are equivalent if
and only if k̃(z, z′) = k(z, z′) + f (z) + f (z′), for some shift function f : Z → R.

Not every choice of shift function f in Proposition 18 will be valid, as both k

and k̃ are required to be positive definite. An important class of shift functions can
be derived using RKHS functions, however. Namely, let k be a kernel on Z and let
f ∈ Hk , and define a kernel

k̃f

(
z, z′) = 〈

k(·, z) − f, k
(·, z′) − f

〉
Hk

= k
(
z, z′) − f (z) − f

(
z′) + ‖f ‖2

Hk
.

Since it is representable as an inner product in a Hilbert space, k̃f is a valid kernel
which is equivalent to k by Proposition 18. As a special case, if f = μk(P ) for
some P ∈ M1+(Z), we obtain the kernel centred at probability measure P :

k̃P

(
z, z′) := k

(
z, z′) + EWW ′k

(
W,W ′) − EWk(z,W) − EWk

(
z′,W

)
,(4.4)

with W,W ′ i.i.d.∼ P . Note that E
ZZ′i.i.d.∼ P

k̃P (Z,Z′) = 0, that is, μ
k̃P

(P ) = 0. The
kernels of form (4.4) that are centred at the point masses P = δz0 are precisely the
distance kernels equivalent to k.

The relationship between positive definite kernels and semimetrics of negative
type is illustrated in Figure 1.



2274 SEJDINOVIC, SRIPERUMBUDUR, GRETTON AND FUKUMIZU

FIG. 1. The relationship between kernels and semimetrics. An equivalence class of nondegenerate
PD kernels is associated to a single semimetric of negative type, and distance kernels induced by that
semimetric form only a subset of that class.

REMARK 19. The requirement that kernels be characteristic (as introduced
below Definition 10) is clearly important in hypothesis testing. A second family of
kernels, widely used in the machine learning literature, are the universal kernels:
universality can be used to guarantee consistency of learning algorithms [Steinwart
and Christmann (2008)]. While these two notions are closely related, and in some
cases coincide [Sriperumbudur, Fukumizu and Lanckriet (2011)], one can easily
construct nonuniversal characteristic kernels as a consequence of Proposition 18.
See Appendix B for details.

4.3. Existence of kernel embedding through a semimetric. In Section 3.1, we
have seen that a sufficient condition for the kernel embedding μk(ν) of ν ∈ M(Z)

to exist is that ν ∈ M1/2
k (Z). We will now interpret this condition in terms of the

semimetric ρ generated by k, by relating Mθ
k(Z) to the space Mθ

ρ(Z) of measures
with finite θ -moment w.r.t. ρ.

PROPOSITION 20. Let k be a kernel that generates semimetric ρ, and let
n ∈ N. Then Mn/2

k (Z) = Mn/2
ρ (Z). In particular, if k1 and k2 generate the same

semimetric ρ, then Mn/2
k1

(Z) = Mn/2
k2

(Z).

PROOF. Let θ ≥ 1
2 . Suppose ν ∈ Mθ

k(Z). Then we have∫
ρθ(z, z0) d|ν|(z) =

∫ ∥∥k(·, z) − k(·, z0)
∥∥2θ

Hk
d|ν|(z)

≤
∫ (∥∥k(·, z)∥∥Hk

+ ∥∥k(·, z0)
∥∥

Hk

)2θ
d|ν|(z)

≤ 22θ−1
(∫ ∥∥k(·, z)∥∥2θ

Hk
d|ν|(z) +

∫ ∥∥k(·, z0)
∥∥2θ

Hk
d|ν|(z)

)



DISTANCE-BASED AND RKHS-BASED STATISTICS 2275

= 22θ−1
(∫

kθ (z, z) d|ν|(z) + kθ (z0, z0)|ν|(Z)

)
< ∞,

where we have used that a2θ is a convex function of a. From the above it is clear
that Mθ

k(Z) ⊂ Mθ
ρ(Z) for θ ≥ 1/2.

To prove the other direction, we show by induction that Mθ
ρ(Z) ⊂ Mn/2

k (Z) for

θ ≥ n
2 , n ∈ N. Let n = 1, θ ≥ 1

2 , and suppose that ν ∈ Mθ
ρ(X ). Then, by invoking

the reverse triangle and Jensen’s inequalities, we have∫
ρθ(z, z0) d|ν|(z) =

∫ ∥∥k(·, z) − k(·, z0)
∥∥2θ

Hk
d|ν|(z)

≥
∫ ∣∣k1/2(z, z) − k1/2(z0, z0)

∣∣2θ
d|ν|(z)

≥
∣∣∣∣
∫

k1/2(z, z) d|ν|(z) − ‖ν‖TVk1/2(z0, z0)

∣∣∣∣2θ

,

which implies ν ∈ M1/2
k (Z), thereby satisfying the result for n = 1. Suppose the

result holds for θ ≥ n−1
2 , that is, Mθ

ρ(Z) ⊂ M(n−1)/2
k (Z) for θ ≥ n−1

2 . Let ν ∈
Mθ

ρ(Z) for θ ≥ n
2 . Then we have∫

ρθ(z, z0) d|ν|(z)

=
∫ (∥∥k(·, z) − k(·, z0)

∥∥n
Hk

)2θ/n
d|ν|(z)

≥
∣∣∣∣
∫ (∥∥k(·, z)∥∥Hk

− ∥∥k(·, z0)
∥∥

Hk

)n
d|ν|(z)

∣∣∣∣2θ/n

=
∣∣∣∣∣
∫ n∑

r=0

(−1)r
(

n

r

)∥∥k(·, z)∥∥n−r
Hk

∥∥k(·, z0)
∥∥r

Hk
d|ν|(z)

∣∣∣∣∣
2θ/n

=
∣∣∣∣∣
∫

kn/2(z, z) d|ν|(z)︸ ︷︷ ︸
A

+
n∑

r=1

(−1)r
(

n

r

)
kr/2(z0, z0)

∫
k(n−r)/2(z, z) d|ν|(z)

︸ ︷︷ ︸
B

∣∣∣∣∣
2θ/n

.

Note that the terms in B are finite since for θ ≥ n
2 ≥ n−1

2 ≥ · · · ≥ 1
2 , we have

Mθ
ρ(Z) ⊂ M(n−1)/2

k (Z) ⊂ · · · ⊂ M1
k(Z) ⊂ M1/2

k (Z) and therefore A is finite,
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which means ν ∈ Mn/2
k (Z), that is, Mθ

ρ(Z) ⊂ Mn/2
k (Z) for θ ≥ n

2 . The result
shows that Mθ

ρ(Z) = Mθ
k(Z) for all θ ∈ {n

2 :n ∈ N}. �

REMARK 21. We are now able to show that P,Q ∈ M1
ρ(Z) is sufficient for

the existence of DE,ρ(P,Q), that is, to show validity of Definition 5 for general
semimetrics of negative type ρ. Namely, we let k be any kernel that generates ρ,
whereby P,Q ∈ M1

k(Z). Thus,

EZWρ(Z,W) = EZk(Z,Z) + EWk(W,W) − 2EZWk(Z,W) < ∞,

where the first term is finite as P ∈ M1
k(Z), the second term is finite as Q ∈

M1
k(Z), and the third term is finite by noticing that |k(z,w)| ≤ k1/2(z, z) ×

k1/2(w,w) and P,Q ∈ M1
k(Z) ⊂ M1/2

k (Z).

Proposition 20 gives a natural interpretation of conditions on probability mea-
sures in terms of moments w.r.t. ρ. Namely, the kernel embedding μk(P ), where
kernel k generates the semimetric ρ, exists for every P with finite half-moment
w.r.t. ρ, and thus the MMD, γk(P,Q) between P and Q is well defined whenever
both P and Q have finite half-moments w.r.t. ρ. Furthermore, HSIC between ran-
dom variables X and Y is well defined whenever their marginals PX and PY have
finite first moments w.r.t. semimetric ρX and ρY generated by kernels kX and kY
on their respective domains X and Y .

5. Main results. In this section, we establish the equivalence between the
distance-based approach and the RKHS-based approach to two-sample and inde-
pendence testing from Sections 2 and 3, respectively.

5.1. Equivalence of MMD and energy distance. We show that for every ρ, the
energy distance DE,ρ is related to the MMD associated to a kernel k that gener-
ates ρ.

THEOREM 22. Let (Z, ρ) be a semimetric space of negative type and let k be
any kernel that generates ρ. Then

DE,ρ(P,Q) = 2γ 2
k (P,Q) ∀P,Q ∈ M1+(Z) ∩ M1

ρ(Z).

In particular, equivalent kernels have the same maximum mean discrepancy.

PROOF. Since k generates ρ, we can write ρ(z,w) = k(z, z) + k(w,w) −
2k(z,w). Denote ν = P − Q. Then

DE,ρ(P,Q) = −
∫ ∫ [

k(z, z) + k(w,w) − 2k(z,w)
]
dν(z) dν(w)

= 2
∫ ∫

k(z,w)dν(z) dν(w)

= 2γ 2
k (P,Q),
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FIG. 2. Isometries relating the semimetric ρ on Z with the RKHS corresponding to a kernel k that
generates ρ, and with the set of probability measures on Z : (1) z �→ k(·, z) embeds (Z, ρ1/2) into
Hk , (2) z �→ δz embeds (Z, ρ1/2) into (M1+(Z), γk), and (3) P �→ μk(P ) embeds (M1+(Z), γk)

into Hk .

where we used the fact that ν(Z) = 0. �

This result may be compared with that of Lyons [(2013), page 11, equa-
tion (3.9)] for embeddings into general Hilbert spaces, where we have provided
the link to RKHS-based statistics (and MMD in particular). Theorem 22 shows
that all kernels that generate the same semimetric ρ on Z give rise to the same
metric γk on (possibly a subset of) M1+(Z), whence γk is merely an extension of
the metric induced by ρ1/2 on point masses, since

γk(δz, δz′) = ∥∥k(·, z) − k
(·, z′)∥∥

Hk
= ρ1/2(

z, z′).
In other words, whenever kernel k generates ρ, z �→ δz is an isometry be-
tween (Z, ρ1/2) and {δz : z ∈ Z} ⊂ M1+(Z), endowed with the MMD metric

γk = 1
2D

1/2
E,ρ ; and the Aronszajn map z �→ k(·, z) is an isometric embedding of

a metric space (Z, ρ1/2) into Hk . These isometries are depicted in Figure 2.
For simplicity, we show the case of a bounded kernel, where kernel embed-
dings are well defined for all P ∈ M1+(Z), in which case (M1+(Z), γk) and
μk(M1+(Z)) = {μk(P ) :P ∈ M1+(Z)} endowed with the Hilbert-space metric in-
herited from Hk are also isometric (note that this implies that the subsets of RKHSs
corresponding to equivalent kernels are also isometric).
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REMARK 23. Theorem 22 requires that P,Q ∈ M1
ρ(Z), that is, that P and

Q have finite first moments w.r.t. ρ, as otherwise the energy distance between P

and Q may be undefined; for example, each of the expectations EZZ′ρ(Z,Z′),
EWW ′ρ(W,W ′) and EZWρ(Z,W) may be infinite. However, as long as a weaker
condition P,Q ∈ M1/2

ρ (Z) is satisfied, that is, P and Q have finite half -moments
w.r.t. ρ, the maximum mean discrepancy γk will be well defined. If, in addition,
P,Q ∈ M1

ρ(Z), then the energy distance between P and Q is also well defined,
and must be equal to γk . We will later invoke the same condition P,Q ∈ M1

k(Z)

when describing the asymptotic distribution of the empirical maximum mean dis-
crepancy in Section 7.

5.2. Equivalence between HSIC and distance covariance. We now show that
distance covariance is an instance of the Hilbert–Schmidt independence criterion.

THEOREM 24. Let (X , ρX ) and (Y, ρY ) be semimetric spaces of negative
type, and let X ∼ PX ∈ M2

ρX (X ) and Y ∼ PY ∈ M2
ρY (Y), having joint distribu-

tion PXY . Let kX and kY be any two kernels on X and Y that generate ρX and
ρY , respectively, and denote

k
(
(x, y),

(
x′, y′)) = kX

(
x, x′)kY

(
y, y′).(5.1)

Then, V 2
ρX ,ρY (X,Y ) = 4γ 2

k (PXY ,PXPY ).

PROOF. Define ν = PXY − PXPY . Then

V 2
ρX ,ρY (X,Y ) =

∫ ∫
ρX

(
x, x′)ρY

(
y, y′)dν(x, y) dν

(
x′, y′)

=
∫ ∫ (

kX (x, x) + kX
(
x′, x′) − 2kX

(
x, x′))

× (
kY (y, y) + kY

(
y′, y′) − 2kY

(
y, y′))dν(x, y) dν

(
x′, y′)

= 4
∫ ∫

kX
(
x, x′)kY

(
y, y′)dν(x, y) dν

(
x′, y′)

= 4γ 2
k (PXY ,PXPY ),

where we used that ν(X × Y) = 0, and that
∫

g(x, y, x′, y′) dν(x, y) dν(x′, y′) = 0
when g does not depend on one or more of its arguments, since ν also has
zero marginal measures. Convergence of integrals of the form

∫
kX (x, x) ×

kY (y, y) dν(x, y) is ensured by the moment conditions on the marginals. �

We remark that a similar result to Theorem 24 is given by Lyons [(2013), Propo-
sition 3.16], but without making use of the link with kernel embeddings. Theo-
rem 24 is a more general statement, in the sense that we allow ρ to be a semimetric
of negative type, rather than metric. In addition, the kernel interpretation leads to
a significantly simpler proof: the result is an immediate application of the HSIC
expansion in (3.6).
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REMARK 25. As in Remark 23, to ensure the existence of the distance co-
variance, we impose a stronger condition on the marginals: PX ∈ M2

kX (X ) and

PY ∈ M2
kY (Y), while PX ∈ M1

kX (X ) and PY ∈ M1
kY (Y) are sufficient for the

existence of the Hilbert–Schmidt independence criterion.

By combining the Theorems 22 and 24, we can establish the direct relation
between energy distance and distance covariance, as discussed in Remark 7.

COROLLARY 26. Let (X , ρX ) and (Y, ρY ) be semimetric spaces of negative
type, and let X ∼ PX ∈ M2

ρX (X ) and Y ∼ PY ∈ M2
ρY (Y), having joint distribu-

tion PXY . Then V 2
ρX ,ρY (X,Y ) = DE,ρ̃(PXY ,PXPY ), where 1

2 ρ̃ is generated by the
product kernel in (5.1).

REMARK 27. As introduced by Székely, Rizzo and Bakirov (2007), the no-
tion of distance covariance extends naturally to that of distance variance V 2(X) =
V 2(X,X) and of distance correlation (by analogy with the Pearson product-
moment correlation coefficient),

R2(X,Y ) =
⎧⎪⎨
⎪⎩

V 2(X,Y )

V(X)V(Y )
, V(X)V(Y ) > 0,

0, V(X)V(Y ) = 0.

The distance correlation can also be expressed in terms of associated kernels—see
Appendix A for details.

5.3. Characteristic function interpretation. The distance covariance in (2.7)
was defined by Székely, Rizzo and Bakirov (2007) in terms of a weighted distance
between characteristic functions. We briefly review this interpretation here, and
show that this approach cannot be used to derive a kernel-based measure of de-
pendence [this result was first obtained by Gretton, Fukumizu and Sriperumbudur
(2009), and is included here in the interest of completeness]. Let X be a random
vector on X = R

p and Y a random vector on Y = R
q . The characteristic functions

of X and Y , respectively, will be denoted by fX and fY , and their joint character-
istic function by fXY . The distance covariance V(X,Y ) is defined via the norm of
fXY − fXfY in a weighted L2 space on R

p+q , that is,

V 2(X,Y ) =
∫

Rp+q

∣∣fX,Y (t, s) − fX(t)fY (s)
∣∣2w(t, s) dt ds(5.2)

for a particular choice of weight function given by

w(t, s) = 1

cpcq

· 1

‖t‖1+p‖s‖1+q
,(5.3)

where cd = π(1+d)/2/
((1 + d)/2), d ≥ 1. An important property of distance
covariance is that V(X,Y ) = 0 if and only if X and Y are independent. We
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next obtain a similar statistic in the kernel setting. Write Z = X × Y , and let
k(z, z′) = κ(z−z′) be a translation invariant RKHS kernel on Z , where κ : Z → R

is a bounded continuous function. Using Bochner’s theorem, κ can be written as

κ(z) =
∫

e−z�u d�(u)

for a finite nonnegative Borel measure �. It follows [Gretton, Fukumizu and Sripe-
rumbudur (2009)] that

γ 2
k (PXY ,PXPY ) =

∫
Rp+q

∣∣fX,Y (t, s) − fX(t)fY (s)
∣∣2 d�(t, s),

which is in clear correspondence with (5.2). The weight function in (5.3) is not
integrable, however, so we cannot find a continuous translation invariant kernel for
which γk coincides with the distance covariance. Indeed, the kernel in (5.1) is not
translation invariant.

A further related family of statistics for two-sample tests has been studied by
Alba Fernández, Jiménez Gamero and Muñoz García (2008), and the majority
of results therein can be directly obtained via Bochner’s theorem from the corre-
sponding results on kernel two-sample testing, in the case of translation-invariant
kernels on R

d . That being said, we emphasise that the RKHS-based approach ex-
tends to general topological spaces and positive definite functions, and it is unclear
whether every kernel two-sample/independence test has an interpretation in terms
of characteristic functions.

6. Distinguishing probability distributions. Theorem 3.20 of Lyons (2013)
shows that distance covariance in a metric space characterizes independence if the
metrics satisfy an additional property, termed strong negative type. We review this
notion and establish the interpretation of strong negative type in terms of RKHS
kernel properties.

DEFINITION 28. The semimetric space (Z, ρ), where ρ is generated by ker-
nel k, is said to have a strong negative type if ∀P,Q ∈ M1+(Z) ∩ M1

k(Z),

P �= Q ⇒
∫

ρ d
([P − Q] × [P − Q]) < 0.(6.1)

Since the quantity in (6.1) is, by equation (2.6), exactly −DE,ρ(P,Q) =
−2γ 2

k (P,Q), ∀P,Q ∈ M1+(Z) ∩ M1
k(Z), the following is immediate:

PROPOSITION 29. Let kernel k generate ρ. Then (Z, ρ) has a strong negative
type if and only if k is characteristic to M1+(Z) ∩ M1

k(Z).

Thus, the problem of checking whether a semimetric is of strong negative type
is equivalent to checking whether its associated kernel is characteristic to an appro-
priate space of Borel probability measures. This conclusion has some overlap with
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[Lyons (2013)]: in particular, Proposition 29 is stated in [Lyons (2013), Proposi-
tion 3.10], where the barycenter map β is a kernel embedding in our terminology,
although Lyons does not consider distribution embeddings in an RKHS.

REMARK 30. From Lyons (2013), Theorem 3.25, every separable Hilbert
space Z is of strong negative type, so a distance kernel k induced by the (inner
product) metric on Z is characteristic to the appropriate space of probability mea-
sures.

REMARK 31. Consider the kernel in (5.1), and assume for simplicity that kX
and kY are bounded, so that we can consider embeddings of all probability mea-
sures. It turns out that k need not be characteristic—that is, it may not be able to
distinguish between any two distributions on X × Y , even if kX and kY are char-
acteristic. Namely, if kX is the distance kernel induced by ρX and centred at x0,
then k((x0, y), (x0, y

′)) = 0 for all y, y′ ∈ Y . That means that for every two dis-
tinct PY ,QY ∈ M1+(Y), we have γ 2

k (δx0PY , δx0QY ) = 0. Thus, given that ρX and
ρY have strong negative type, the kernel in (5.1) characterizes independence, but
not equality of probability measures on the product space. Informally speaking,
distinguishing PXY from PXPY is an easier problem than two-sample testing on
the product space.

7. Empirical estimates and hypothesis tests. In this section, we outline the
construction of tests based on the empirical counterparts of MMD/energy distance
and HSIC/distance covariance.

7.1. Two-sample testing. So far, we have seen that the population expression
of the MMD between P and Q is well defined as long as P and Q lie in the space

M1/2
k (Z), or, equivalently, have a finite half-moment w.r.t. semimetric ρ generated

by k. However, this assumption will not suffice to establish a meaningful hypoth-
esis test using empirical estimates of the MMD. We will require a stronger con-
dition, that P,Q ∈ M1+(Z) ∩ M1

k(Z) (which is the same condition under which
the energy distance is well defined). Note that, under this condition we also have
k ∈ L2

P×P (Z × Z), as
∫ ∫

k2(z, z′) dP (z) dP (z′) ≤ (
∫

k(z, z) dP (z))2.
Given i.i.d. samples z = {zi}mi=1 ∼ P and w = {wi}ni=1 ∼ Q, the empirical (bi-

ased) V -statistic estimate of (3.3) is given by

γ̂ 2
k,V (z,w) = γ 2

k

(
1

m

m∑
i=1

δzi
,

1

n

n∑
j=1

δwj

)

= 1

m2

m∑
i=1

m∑
j=1

k(zi, zj ) + 1

n2

n∑
i=1

n∑
j=1

k(wi,wj )(7.1)

− 2

mn

m∑
i=1

n∑
j=1

k(zi,wj ).
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Recall that if k generates ρ, this estimate involves only the pairwise ρ-distances
between the sample points.

We now describe a two-sample test using this statistic. The kernel k̃P centred at
P in (4.4) plays a key role in characterizing the null distribution of degenerate V -
statistic. To k̃P , we associate the integral kernel operator S

k̃P
:L2

P (Z) → L2
P (Z)

[cf., e.g., Steinwart and Christmann (2008), page 126–127], given by

S
k̃P

g(z) =
∫

Z
k̃P (z,w)g(w)dP (w).(7.2)

The condition that P ∈ M1
k(Z), and, as a consequence, that k̃P ∈ L2

P×P (Z × Z),
is closely related to the desired properties of the integral operator. Namely, this im-
plies that S

k̃P
is a trace class operator, and, thus, a Hilbert–Schmidt operator [Reed

and Simon (1980), Proposition VI.23]. The following theorem is a special case of
Gretton et al. (2012a), Theorem 12, which extends Anderson, Hall and Tittering-
ton (1994), Section 2.3, to general RKHS kernels (as noted by Anderson et al., the
form of the asymptotic distribution of the V -statistic requires S

k̃P
to be trace-class,

whereas the U -statistic has the weaker requirement that S
k̃P

be Hilbert–Schmidt).
For simplicity, we focus on the case where m = n.

THEOREM 32. Let k be a kernel on Z , and Z = {Zi}mi=1 and W = {Wi}mi=1 be
two i.i.d. samples from P ∈ M1+(Z) ∩ M1

k(Z). Assume S
k̃P

is trace class. Then

m

2
γ̂ 2
k,V (Z,W) �

∞∑
i=1

λiN
2
i ,(7.3)

where Ni
i.i.d.∼ N (0,1), i ∈ N, and {λi}∞i=1 are the eigenvalues of the operator S

k̃P
.

Note that the limiting expression in (7.3) is a valid random variable precisely
since S

k̃P
is Hilbert–Schmidt, that is, since

∑∞
i=1 λ2

i < ∞.

7.2. Independence testing. In the case of independence testing, we are given
i.i.d. samples z = {(xi, yi)}mi=1 ∼ PXY , and the resulting V -statistic estimate
(HSIC) is [Gretton et al. (2005, 2008)]

HSIC(z;kX , kY ) = 1

m2 Tr(KX HKY H),(7.4)

where KX , KY and H are m × m matrices given by (KX )ij := kX (xi, xj ),
(KY )ij := kY (yi, yj ) and Hij = δij − 1

m
(centering matrix). The null distribution of

HSIC takes an analogous form to (7.3) of a weighted sum of chi-squares, but with
coefficients corresponding to the products of the eigenvalues of integral operators
S

k̃PX
:L2

PX
(X ) → L2

PX
(X ) and S

k̃PY
:L2

PY
(Y) → L2

PY
(Y). Similarly to the case

of two-sample testing, we will require that PX ∈ M1
kX (X ) and PY ∈ M1

kY (Y),
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implying that integral operators S
k̃PX

and S
k̃PY

are trace class operators. The fol-

lowing theorem is from Zhang et al. (2011), Theorem 4. See also Lyons (2013),
Remark 2.9.

THEOREM 33. Let Z = {(Xi, Yi)}mi=1 be an i.i.d. sample from PXY = PXPY ,
with values in X × Y , s.t. PX ∈ M1

kX (X ) and PY ∈ M1
kY (Y). Then

mHSIC(Z;kX , kY ) �
∞∑
i=1

∞∑
j=1

λiηjN
2
i,j ,(7.5)

where Ni,j ∼ N (0,1), i, j ∈ N, are independent and {λi}∞i=1 and {ηj }∞j=1 are the
eigenvalues of the operators S

k̃PX
and S

k̃PY
, respectively.

7.3. Test designs. We would like to design distance-based tests with an
asymptotic Type I error of α, and thus we require an estimate of the (1 − α)-
quantile of the null distribution. We investigate two approaches, both of which
yield consistent tests: a bootstrap approach [Arcones and Giné (1992)] and a spec-
tral approach [Gretton et al. (2009), Zhang et al. (2011)]. The latter requires empir-
ical computation of eigenvalues of the integral kernel operators, a problem studied
extensively in the context of kernel PCA [Schölkopf, Smola and Müller (1997)].
To estimate limiting distribution in (7.3), we compute the spectrum of the centred
Gram matrix K̃ = HKH on the aggregated samples. Here, K is a 2m × 2m ma-
trix, with entries Kij = k(ui, uj ), u = [zw] is the concatenation of the two samples
and H is the centering matrix. Gretton et al. (2009) show that the null distribu-
tion defined using the finite sample estimates of these eigenvalues converges to
the population distribution, provided that the spectrum is square-root summable.
As demonstrated empirically by Gretton et al. (2009), spectral estimation of the
test threshold has a smaller computational cost than that of the bootstrap-based
approach, while providing an indistinguishable performance. The same approach
can be used in obtaining a consistent finite sample null distribution for HSIC, via
computation of the empirical eigenvalues of K̃X = HKX H and K̃Y = HKY H ;
see Zhang et al. (2011).

Both Székely and Rizzo [(2004), page 14] and Székely, Rizzo and Bakirov
[(2007), pages 2782–2783] establish that the energy distance and distance co-
variance statistics, respectively, converge to the weighted sums of chi-squares of
forms similar to (7.3). Analogous results for the generalized distance covariance
are presented in Lyons (2013), pages 7–8. These works do not propose test designs
that attempt to estimate the coefficients λi , i ∈ N, however. Besides the bootstrap,
Székely, Rizzo and Bakirov [(2007), Theorem 6] also propose an independence
test using a bound applicable to a general quadratic form Q of centered Gaus-
sian random variables with E[Q] = 1 : P{Q ≥ (�−1(1 − α/2)2)} ≤ α, valid for
0 < α ≤ 0.215. When applied to the distance covariance statistic, the upper bound
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of α is achieved if X and Y are independent Bernoulli variables. The authors re-
mark that the resulting criterion might be over-conservative. Thus, more sensitive
distance covariance tests are possible by computing the spectrum of the centred
Gram matrices associated to distance kernels, which is the approach we apply in
the next section.

8. Experiments. In this section, we assess the numerical performance of the
distance-based and RKHS-based test statistics with some standard distance/kernel
choices on a series of synthetic data examples.

8.1. Two-sample experiments. In the two-sample experiments, we investigate
three different kinds of synthetic data. In the first, we compare two multivariate
Gaussians, where the means differ in one dimension only, and all variances are
equal. In the second, we again compare two multivariate Gaussians, but this time
with identical means in all dimensions, and variance that differs in a single di-
mension. In our third experiment, we use the benchmark data of Sriperumbudur
et al. (2009): one distribution is a univariate Gaussian, and the second is a uni-
variate Gaussian with a sinusoidal perturbation of increasing frequency (where
higher frequencies correspond to harder problems). All tests use a distance kernel
induced by the Euclidean distance. As shown on the left-hand plots in Figure 3,
the spectral and bootstrap test designs appear indistinguishable, and significantly
outperform the test designed using the quadratic form bound, which appears to
be far too conservative for the data sets considered. The average Type I errors are
listed in Table 1, and are close to the desired test size of α = 0.05 for the spectral
and bootstrap tests.

We also compare the performance to that of the Gaussian kernel, commonly
used in machine learning, with the bandwidth set to the median distance between
points in the aggregation of samples. We see that when the means differ, both tests
perform similarly. When the variances differ, it is clear that the Gaussian kernel
has a major advantage over the distance-induced kernel, although this advantage
decreases with increasing dimension (where both perform poorly). In the case of a
sinusoidal perturbation, the performance is again very similar.

In addition, following Example 15, we investigate performance of kernels ob-
tained using the semimetric ρ(z, z′) = ‖z − z′‖q for 0 < q ≤ 2. Results are pre-
sented in the right-hand plots of Figure 3. In the case of sinusoidal perturbation,
we observe a dramatic improvement compared with the q = 1 case and the Gaus-
sian kernel: values q = 1/3 (and smaller) offer virtually error-free performance
even at high frequencies [note that q = 1 yields the energy distance described in
Székely and Rizzo (2004, 2005)]. Small improvements over a wider q range are
also observed in the cases of differing mean and variance.

We observe from the simulation results that distance-induced kernels with
higher exponents are advantageous in cases where distributions differ in mean
value along a single dimension (with noise in the remainder), whereas distance



DISTANCE-BASED AND RKHS-BASED STATISTICS 2285

FIG. 3. (Left) MMD using Gaussian and distance kernels for various tests; (right) Spectral MMD
using distance kernels with various exponents.

kernels with smaller exponents are more sensitive to differences in distributions at
finer lengthscales (i.e., where the characteristic functions of the distributions differ
at higher frequencies).
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TABLE 1
Type I error (in %) for two-sample tests with

distance-induced kernels

mean var sine

Spec 4.66 4.72 5.10
Boot 5.02 5.16 5.20
Qform 0.02 0.05 0.98

8.2. Independence experiments. To assess independence tests, we used an ar-
tificial benchmark proposed by Gretton et al. (2008): we generated univariate ran-
dom variables from the Independent Component Analysis (ICA) benchmark den-
sities of Bach and Jordan (2002); rotated them in the product space by an angle be-
tween 0 and π/4 to introduce dependence; filled additional dimensions with inde-
pendent Gaussian noise; and, finally, passed the resulting multivariate data through
random and independent orthogonal transformations. The resulting random vari-
ables X and Y were dependent but uncorrelated. The case m = 128 (sample size)
and d = 2 (dimension) is plotted in Figure 4 (left). As observed by Gretton, Fuku-
mizu and Sriperumbudur (2009), the Gaussian kernel using the median inter-point
distance as bandwidth does better than the distance-induced kernel with q = 1. By
varying q , however, we are able to obtain a wide performance range: in particular,
the values q = 1/3 (and smaller) have an advantage over the Gaussian kernel on
this dataset. As for the two-sample case, bootstrap and spectral tests have indis-
tinguishable performance, and are significantly more sensitive than the quadratic
form-based test, which failed to detect any dependence on this dataset.

FIG. 4. HSIC using distance kernels with various exponents and a Gaussian kernel as a function
of (left) the angle of rotation for the dependence induced by rotation; (right) frequency � in the
sinusoidal dependence example.
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In addition, we assess the performance on sinusoidally dependent data. The
sample of the random variable pair X,Y was drawn from PXY ∝ 1 + sin(�x) ×
sin(�y) for integer �, on the support X × Y , where X := [−π,π ] and Y :=
[−π,π ]. In this way, increasing � causes the departure from a uniform (indepen-
dent) distribution to occur at increasing frequencies, making this departure harder
to detect given a small sample size. Results are in Figure 4 (right). The distance
covariance outperforms the Gaussian kernel (median bandwidth) on this example,
and smaller exponents result in better performance (lower Type II error when the
departure from independence occurs at higher frequencies). Finally, we note that
the setting q = 1, as described by Székely, Rizzo and Bakirov (2007), Székely and
Rizzo (2009), is a reasonable heuristic in practice, but does not yield the most pow-
erful tests on either dataset. Informally, the exponent in the distance-induced kernel
plays a similar role as the bandwidth of the Gaussian kernel, and smaller exponents
are able to detect dependencies at smaller lengthscales. Poor performance of the
Gaussian kernel with median bandwidth in this example is a consequence of the
mismatch between the overall lengthscale of the marginal distributions (captured
by the median inter-point distances) and the lengthscales at which dependencies
are present.

9. Conclusion. We have established an equivalence between the generalized
notions of energy distance and distance covariance, computed with respect to semi-
metrics of negative type, and distances between embeddings of probability mea-
sures into certain reproducing kernel Hilbert spaces. As a consequence, we can
view energy distance and distance covariance as members of a much larger class
of discrepancy/dependence measures, and we can choose among this larger class
to design more powerful tests. For instance, Gretton et al. (2012b) recently pro-
posed a strategy of selecting from a candidate kernels so as to asymptotically op-
timize the relative efficiency of a two-sample test. Moreover, kernel-based tests
can be performed on the data that do not lie in a Euclidean space. This opens the
door to new and powerful tools for exploratory data analysis whenever an appro-
priate domain-specific notion of distance (negative type semimetric) or similarity
(kernel) can be defined. Finally, the family of kernels that arises from the energy
distance/distance covariance can be employed in many additional kernel-based ap-
plications in statistics and machine learning, such as conditional dependence test-
ing and estimating the chi-squared distance [Fukumizu et al. (2008)], Bayesian
inference [Fukumizu, Song and Gretton (2011)] and mixture density estimation
[Sriperumbudur (2011)].

APPENDIX A: DISTANCE CORRELATION

As described by Székely, Rizzo and Bakirov (2007), the notion of distance co-
variance extends naturally to that of distance variance V 2(X) = V 2(X,X) and
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of distance correlation (by analogy with the Pearson product-moment correlation
coefficient),

R2(X,Y ) =
⎧⎪⎨
⎪⎩

V 2(X,Y )

V(X)V(Y )
, V(X)V(Y ) > 0,

0, V(X)V(Y ) = 0.

Distance correlation also has a straightforward interpretation in terms of kernels,

R2(X,Y ) = V 2(X,Y )

V(X)V(Y )

= γ 2
k (PXY ,PXPY )

γk(PXX,PXPX)γk(PYY ,PY PY )
(A.1)

= ‖�XY ‖2
HS

‖�XX‖HS‖�YY ‖HS
,

where covariance operator �XY : HkX → HkY is a linear operator for which
〈�XY f,g〉HkY

= EXY [f (X)g(Y )] − EXf (X)EY g(Y ) for all f ∈ HkX and g ∈
HkY , and ‖ · ‖HS denotes the Hilbert–Schmidt norm [Gretton et al. (2005)]. It
is clear that R is invariant to scaling (X,Y ) �→ (εX, εY ), ε > 0, whenever the
corresponding semimetrics are homogeneous, that is, whenever ρX (εx, εx′) =
ερX (x, x′), and similarly for ρY . Moreover, R is invariant to translations,
(X,Y ) �→ (X + x′, Y + y′), x′ ∈ X , y′ ∈ Y , whenever ρX and ρY are transla-
tion invariant. Therefore, by varying the choice of kernels kX and kY , we obtain
in (A.1) a very broad class of dependence measures that generalize the distance
correlation of Székely, Rizzo and Bakirov (2007) and can be used in exploratory
data analysis as a measure of dependence between pairs of random variables that
take values in multivariate or structured/non-Euclidean domains.

APPENDIX B: LINK WITH UNIVERSAL KERNELS

We briefly remark on how our results on equivalent kernels relate to the no-
tion of universal kernels on compact metric spaces in the sense of Steinwart and
Christmann (2008), Definition 4.52:

DEFINITION 34. A continuous kernel k on a compact metric space Z is said
to be universal if its RKHS Hk is dense in the space C(Z) of continuous functions
on Z , endowed with the uniform norm.

The family of universal kernels includes the most popular choices in machine
learning literature, including the Gaussian and the Laplacian kernel. The follow-
ing characterization of universal kernels is due to Sriperumbudur, Fukumizu and
Lanckriet (2011):
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PROPOSITION 35. Let k be a continuous kernel on a compact metric space Z .
Then, k is universal if and only if μk : M(Z) → Hk is a vector space monomor-
phism, that is,∥∥μk(ν)

∥∥2
Hk

=
∫ ∫

k
(
z, z′)dν(z) dν

(
z′) > 0 ∀ν ∈ M(Z) \ {0}.

As a direct consequence, every universal kernel k is also characteristic, as μk

is, in particular, injective on the space of probability measures. Now, consider a
kernel k̃f centered at f = μk(ν) for some ν ∈ M(Z), such that ν(Z) = 1. Then
k̃f is no longer universal, since∥∥μ

k̃f
(ν)

∥∥2
H

k̃f

=
∫

k̃f

(
z, z′)dν(z) dν

(
z′)

=
∫ ∫ [

k
(
z, z′) −

∫
k(w, z) dν(w) −

∫
k
(
w,z′)dν(w)

+
∫ ∫

k
(
w,w′)dν(w)dν

(
w′)]dν(z) dν

(
z′)

= (
1 − ν(Z)

)2∥∥μk(ν)
∥∥2

Hk

= 0.

However, k̃f is still characteristic, as it is equivalent to k. This means that all
kernels of the form (4.4), including the distance kernels, are examples of nonuni-
versal characteristic kernels, provided that they generate a semimetric ρ of strong
negative type. In particular, the kernel in (4.2) on a compact Z ⊂ R

d is a character-
istic nonuniversal kernel for q < 2. This result is of some interest to the machine
learning community, as such kernels have typically been difficult to construct. For
example, the two notions are known to be equivalent on the family of translation
invariant kernels on R

d [Sriperumbudur, Fukumizu and Lanckriet (2011)].
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