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Abstract

We provide a unifying framework linking two
classes of statistics used in two-sample and
independence testing: on the one hand, the
energy distances and distance covariances
from the statistics literature; on the other,
distances between embeddings of distribu-
tions to reproducing kernel Hilbert spaces
(RKHS), as established in machine learning.
The equivalence holds when energy distances
are computed with semimetrics of negative
type, in which case a kernel may be defined
such that the RKHS distance between dis-
tributions corresponds exactly to the energy
distance. We determine the class of proba-
bility distributions for which kernels induced
by semimetrics are characteristic (that is, for
which embeddings of the distributions to an
RKHS are injective). Finally, we investigate
the performance of this family of kernels in
two-sample and independence tests: we show
in particular that the energy distance most
commonly employed in statistics is just one
member of a parametric family of kernels,
and that other choices from this family can
yield more powerful tests.

1. Introduction

The problem of testing statistical hypotheses in high
dimensional spaces is particularly challenging, and has
been a recent focus of considerable work in the statis-
tics and machine learning communities. On the statis-
tical side, two-sample testing in Euclidean spaces (of
whether two independent samples are from the same
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distribution, or from different distributions) can be
accomplished using a so-called energy distance as a
statistic (Székely & Rizzo, 2004; 2005). Such tests are
consistent against all alternatives as long as the ran-
dom variables have finite first moments. A related de-
pendence measure between vectors of high dimension
is the distance covariance (Székely et al., 2007; Székely
& Rizzo, 2009), and the resulting test is again consis-
tent for variables with bounded first moment. The dis-
tance covariance has had a major impact in the statis-
tics community, with Székely & Rizzo (2009) being
accompanied by an editorial introduction and discus-
sion. A particular advantage of energy distance-based
statistics is their compact representation in terms of
certain expectations of pairwise Euclidean distances,
which leads to straightforward empirical estimates. As
a follow-up work, Lyons (2011) generalized the notion
of distance covariance to metric spaces of negative type
(of which Euclidean spaces are a special case).

On the machine learning side, two-sample tests have
been formulated based on embeddings of probability
distributions into reproducing kernel Hilbert spaces
(Gretton et al., 2012), using as the test statistic the
difference between these embeddings: this statistic is
called the maximum mean discrepancy (MMD). This
distance measure was applied to the problem of test-
ing for independence, with the associated test statis-
tic being the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005a; 2008; Smola et al., 2007;
Zhang et al., 2011). Both tests are shown to be con-
sistent against all alternatives when a characteristic
RKHS is used (Fukumizu et al., 2008; Sriperumbudur
et al., 2010). Such tests can further be generalized to
structured and non-Euclidean domains, such as text
strings, graphs or groups (Fukumizu et al., 2009).

Despite their striking similarity, the link between en-
ergy distance-based tests and kernel-based tests has
been an open question. In the discussion of Székely &
Rizzo (2009), Gretton et al. (2009b, p. 1289) first ex-
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plored this link in the context of independence testing,
and stated that interpreting the distance-based inde-
pendence statistic as a kernel statistic is not straight-
forward, since Bochner’s theorem does not apply to
the choice of weight function used in the definition of
Brownian distance covariance (we briefly review this
argument in Section A.3 of the Appendix). Székely &
Rizzo (2009, Rejoinder, p. 1303) confirmed this con-
clusion, and commented that RKHS-based dependence
measures do not seem to be formal extensions of Brow-
nian distance covariance because the weight function is
not integrable. Our contribution resolves this question
and shows that RKHS-based dependence measures are
precisely the formal extensions of Brownian distance
covariance, where the problem of non-integrability of
weight functions is circumvented by using translation-
variant kernels, i.e., distance-induced kernels, a novel
family of kernels that we introduce in Section 2.2.

In the case of two-sample testing, we demonstrate that
energy distances are in fact maximum mean discrepan-
cies arising from the same family of distance-induced
kernels. A number of interesting consequences arise
from this insight: first, we show that the energy dis-
tance (and distance covariance) derives from a partic-
ular parameter choice from a larger family of kernels:
this choice may not yield the most sensitive test. Sec-
ond, results from Gretton et al. (2009a); Zhang et al.
(2011) may be applied to get consistent two-sample
and independence tests for the energy distance, with-
out using bootstrap, which perform much better than
the upper bound proposed by Székely et al. (2007) as
an alternative to the bootstrap. Third, in relation to
Lyons (2011), we obtain a new family of characteristic
kernels arising from semimetric spaces of negative type
(where the triangle inequality need not hold), which
are quite unlike the characteristic kernels defined via
Bochner’s theorem (Sriperumbudur et al., 2010).

The structure of the paper is as follows: In Section
2, we provide the necessary definitions from RKHS
theory, and the relation between RKHS and semimet-
rics of negative type. In Section 3.1, we review both
the energy distance and distance covariance. We re-
late these quantities in Sections 3.2 and 3.3 to the
Maximum Mean Discrepancy (MMD) and the Hilbert-
Schmidt Independence Criterion (HSIC), respectively.
We give conditions for these quantities to distinguish
between probability measures in Section 4, thus ob-
taining a new family of characteristic kernels. Empir-
ical estimates of these quantities and associated two-
sample and independence tests are described in Sec-
tion 5. Finally, in Section 6, we investigate the per-
formance of the test statistics on a variety of testing
problems, which demonstrate the strengths of the new

kernel family.

2. Definitions and Notation

In this section, we introduce concepts and notation
required to understand reproducing kernel Hilbert
spaces (Section 2.1), and distribution embeddings into
RKHS. We then introduce semimetrics (Section 2.2),
and review the relation of semimetrics of negative type
to RKHS kernels.

2.1. RKHS Definitions

Unless stated otherwise, we will assume that Z is any
topological space.

Definition 1. (RKHS) Let H be a Hilbert space
of real-valued functions defined on Z. A function
k : Z × Z → R is called a reproducing kernel of H
if (i) ∀z ∈ Z, k(·, z) ∈ H, and (ii) ∀z ∈ Z, ∀f ∈
H, 〈f, k(·, z)〉H = f(z). IfH has a reproducing kernel,
it is called a reproducing kernel Hilbert space (RKHS).

According to the Moore-Aronszajn theorem (Berlinet
& Thomas-Agnan, 2004, p. 19), for every symmetric,
positive definite function k : Z × Z → R, there is
an associated RKHS Hk of real-valued functions on Z
with reproducing kernel k. The map ϕ : Z → Hk,
ϕ : z 7→ k(·, z) is called the canonical feature map
or the Aronszajn map of k. We will say that k is a
nondegenerate kernel if its Aronszajn map is injective.

2.2. Semimetrics of Negative Type

We will work with the notion of semimetric of nega-
tive type on a non-empty set Z, where the “distance”
function need not satisfy the triangle inequality. Note
that this notion of semimetric is different to that which
arises from the seminorm, where distance between two
distinct points can be zero (also called pseudonorm).

Definition 2. (Semimetric) Let Z be a non-empty
set and let ρ : Z × Z → [0,∞) be a function such
that ∀z, z′ ∈ Z, (i) ρ(z, z′) = 0 if and only if z = z′,
and (ii) ρ(z, z′) = ρ(z′, z). Then (Z, ρ) is said to be a
semimetric space and ρ is called a semimetric on Z. If,
in addition, (iii) ∀z, z′, z′′ ∈ Z, ρ(z′, z′′) ≤ ρ(z, z′) +
ρ(z, z′′), (Z, ρ) is said to be a metric space and ρ is
called a metric on Z.

Definition 3. (Negative type) The semimetric
space (Z, ρ) is said to have negative type if ∀n ≥ 2,
z1, . . . , zn ∈ Z, and α1, . . . , αn ∈ R with

∑n
i=1 αi = 0,

n∑
i=1

n∑
j=1

αiαjρ(zi, zj) ≤ 0. (1)
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Note that in the terminology of Berg et al. (1984), ρ
satisfying (1) is said to be a negative definite function.
The following theorem is a direct consequence of Berg
et al. (1984, Proposition 3.2, p. 82).
Proposition 4. ρ is a semimetric of negative type
if and only if there exists a Hilbert space H and an
injective map ϕ : Z → H, such that

ρ(z, z′) = ‖ϕ(z)− ϕ(z′)‖2H (2)

This shows that (Rd, ‖· − ·‖2) is of negative type.
From Berg et al. (1984, Corollary 2.10, p. 78), we have
that:

Proposition 5. If ρ satisfies (1), then so does ρq, for
0 < q < 1.

Therefore, by taking q = 1/2, we conclude that all
Euclidean spaces are of negative type. While Lyons
(2011, p. 9) also uses the result in Proposition 4, he
studies embeddings to general Hilbert spaces, and the
relation with the theory of reproducing kernel Hilbert
spaces is not exploited. Semimetrics of negative type
and symmetric positive definite kernels are in fact
closely related, as summarized in the following Lemma
based on Berg et al. (1984, Lemma 2.1, p. 74).

Lemma 6. Let Z be a nonempty set, and let ρ be a
semimetric on Z. Let z0 ∈ Z, and denote k(z, z′) =
ρ(z, z0)+ρ(z′, z0)−ρ(z, z′). Then k is positive definite
if and only if ρ satisfies (1).

We call the kernel k defined above the distance-induced
kernel, and say that it is induced by the semimetric
ρ. For brevity, we will drop “induced” hereafter, and
say that k is simply the distance kernel (with some
abuse of terminology). In addition, we will typically
work with distance kernels scaled by 1/2. Note that
k(z0, z0) = 0, so distance kernels are not strictly pos-
itive definite (equivalently, k(·, z0) = 0). By vary-
ing “the point at the center” z0, one obtains a fam-
ily Kρ =

{
1
2 [ρ(z, z0) + ρ(z′, z0)− ρ(z, z′)]

}
z0∈Z

of dis-
tance kernels induced by ρ. We may now express (2)
from Proposition 4 in terms of the canonical feature
map for the RKHS Hk (proof in Appendix A.1).
Proposition 7. Let (Z, ρ) be a semimetric space of
negative type, and k ∈ Kρ. Then:

1. k is nondegenerate, i.e., the Aronszajn map z 7→
k(·, z) is injective.

2. ρ(z, z′) = k(z, z) + k(z′, z′) − 2k(z, z′) =

‖k(·, z)− k(·, z′)‖2Hk .

Note that Proposition 7 implies that the Aronszajn
map z 7→ k(·, z) is an isometric embedding of a metric
space (Z, ρ1/2) into Hk, for every k ∈ Kρ.

2.3. Kernels Inducing Semimetrics

We now further develop the link between semimetrics
of negative type and kernels. Let k be any nonde-
generate reproducing kernel on Z (for example, every
strictly positive definite k is nondegenerate). Then, by
Proposition 4,

ρ(z, z′) = k(z, z) + k(z′, z′)− 2k(z, z′) (3)

defines a valid semimetric ρ of negative type on Z.
We will say that k generates ρ. It is clear that every
distance kernel k̃ ∈ Kρ also generates ρ, and that k̃
can be expressed as:

k̃(z, z′) = k(z, z′) +k(z0, z0)−k(z, z0)−k(z′, z0), (4)

for some z0 ∈ Z. In addition, k ∈ Kρ if and only if
k(z0, z0) = 0 for some z0 ∈ Z. Hence, it is clear that
any strictly positive definite kernel, e.g., the Gaussian
kernel e−σ‖z−z

′‖2 , is not a distance kernel.

Example 8. Let Z = Rd and write ρq(z, z
′) =

‖z − z′‖q. By combining Propositions 4 and 5, ρq is a
valid semimetric of negative type for 0 < q ≤ 2. It is
a metric of negative type if q ≤ 1. The corresponding
distance kernel “centered at zero” is given by

kq(z, z
′) =

1

2

(
‖z‖q + ‖z′‖q − ‖z − z′‖q

)
. (5)

Example 9. Let Z = Rd, and consider the Gaussian
kernel k(z, z′) = e−σ‖z−z

′‖2 . The induced semimetric
is ρ(z, z′) = 2

[
1− e−σ‖z−z

′‖2
]
. There are many other

kernels that generate ρ, however; for example, the dis-
tance kernel induced by ρ and “centered at zero” is
k̃(z, z′) = e−σ‖z−z

′‖2 + 1− e−σ‖z‖2 − e−σ‖z
′‖2 .

3. Distances and Covariances

In this section, we begin with a description of the en-
ergy distance, which measures distance between dis-
tributions; and distance covariance, which measures
dependence. We then demonstrate that the former is
a special instance of the maximum mean discrepancy
(a kernel measure of distance on distributions), and
the latter an instance of the Hilbert-Schmidt Indepen-
dence criterion (a kernel dependence measure). We
will denote byM(Z) the set of all finite signed Borel
measures on Z, and by M1

+(Z) the set of all Borel
probability measures on Z.

3.1. Energy Distance and Distance Covariance

Székely & Rizzo (2004; 2005) use the following measure
of statistical distance between two probability mea-
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sures P and Q on Rd, termed the energy distance:

DE(P,Q) = 2EZW ‖Z −W‖ − EZZ′ ‖Z − Z ′‖
−EWW ′ ‖W −W ′‖ , (6)

where Z,Z ′ i.i.d.∼ P and W,W ′ i.i.d.∼ Q. This quantity
characterizes the equality of distributions, and in the
scalar case, it coincides with twice the Cramer-Von
Mises distance. We may generalize it to a semimetric
space of negative type (Z, ρ), with the expression for
this generalized distance covariance DE,ρ(P,Q) being
of the same form as (6), with the Euclidean distance
replaced by ρ. Note that the negative type of ρ im-
plies the non-negativity of DE,ρ. In Section 3.2, we
will show that for every ρ, DE,ρ is precisely the MMD
associated to a particular kernel k on Z.

Now, let X be a random vector on Rp and Y a ran-
dom vector on Rq. The distance covariance was in-
troduced in Székely et al. (2007); Székely & Rizzo
(2009) to address the problem of testing and mea-
suring dependence between X and Y , in terms of a
weighted L2-distance between characteristic functions
of the joint distribution of X and Y and the product
of their marginals. Given a particular choice of weight
function, it can be computed in terms of certain ex-
pectations of pairwise Euclidean distances,

V2(X,Y ) = EXY EX′Y ′ ‖X −X ′‖ ‖Y − Y ′‖ (7)
+EXEX′ ‖X −X ′‖EY EY ′ ‖Y − Y ′‖
−2EX′Y ′ [EX ‖X −X ′‖EY ‖Y − Y ′‖] ,

where (X,Y ) and (X ′, Y ′) are i.i.d.∼ PXY . Recently,
Lyons (2011) established that the generalization of the
distance covariance is possible to metric spaces of neg-
ative type, with the expression for this generalized dis-
tance covariance V2

ρX ,ρY (X,Y ) being of the same form
as (7), with Euclidean distances replaced by metrics of
negative type ρX and ρY on domains X and Y , respec-
tively. In Section 3.3, we will show that the general-
ized distance covariance of a pair of random variables
X and Y is precisely HSIC associated to a particular
kernel k on the product of domains of X and Y .

3.2. Maximum Mean Discrepancy

The notion of the feature map in an RKHS (Section
2.1) can be extended to kernel embeddings of probabil-
ity measures (Berlinet & Thomas-Agnan, 2004; Sripe-
rumbudur et al., 2010).

Definition 10. (Kernel embedding) Let k be a ker-
nel on Z, and P ∈ M1

+(Z). The kernel embedding
of P into the RKHS Hk is µk(P ) ∈ Hk such that
EZ∼P f(Z) = 〈f, µk(P )〉Hk for all f ∈ Hk.

Alternatively, the kernel embedding can be defined by
the Bochner expectation µk(P ) = EZ∼P k(·, Z). By
the Riesz representation theorem, a sufficient condi-
tion for the existence of µk(P ) is that k is Borel-
measurable and that EZ∼P k1/2(Z,Z) < ∞. If k is
a bounded continuous function, this is obviously true
for all P ∈M1

+(Z). Kernel embeddings can be used to
induce metrics on the spaces of probability measures,
giving the maximum mean discrepancy (MMD),

γ2k(P,Q) = ‖µk(P )− µk(Q)‖2Hk
= EZZ′k(Z,Z ′) + EWW ′k(W,W ′)

−2EZW k(Z,W ), (8)

where Z,Z ′
i.i.d.∼ P and W,W ′

i.i.d.∼ Q. If the re-
striction of µk to some P(Z) ⊆ M1

+(Z) is well de-
fined and injective, then k is said to be characteristic
to P(Z), and it is said to be characteristic (without
further qualification) if it is characteristic toM1

+(Z).
When k is characteristic, γk is a metric onM1

+(Z), i.e.,
γk (P,Q) = 0 iff P = Q, ∀P,Q ∈ M1

+(Z). Conditions
under which kernels are characteristic have been stud-
ied by Sriperumbudur et al. (2008); Fukumizu et al.
(2009); Sriperumbudur et al. (2010). An alternative
interpretation of (8) is as an integral probability met-
ric (Müller, 1997): see Gretton et al. (2012) for details.

In general, distance kernels are continuous but un-
bounded functions. Thus, kernel embeddings are not
defined for all Borel probability measures, and one
needs to restrict the attention to a class of Borel proba-
bility measures for which EZ∼P k1/2(Z,Z) < ∞ when
discussing the maximum mean discrepancy. We will
assume that all Borel probability measures considered
satisfy a stronger condition that EZ∼P k(Z,Z) < ∞
(this reflects a finite first moment condition on random
variables considered in distance covariance tests, and
will imply that all quantities appearing in our results
are well defined). For more details, see Section A.4
in the Appendix. As an alternative to requiring this
condition, one may assume that the underlying semi-
metric space (Z, ρ) of negative type is itself bounded,
i.e., that supz,z′∈Z ρ(z, z′) <∞.

We are now able to describe the relation between the
maximum mean discrepancy and the energy distance.
The following theorem is a consequence of Lemma 6,
and is proved in Section A.1 of the Appendix.
Theorem 11. Let (Z, ρ) be a semimetric space of neg-
ative type and let z0 ∈ Z. The distance kernel k in-
duced by ρ satisfies γ2k(P,Q) = 1

2DE,ρ(P,Q). In par-
ticular, γk does not depend on the choice of z0.

There is a subtlety to the link between kernels and
semimetrics, when used in computing the distance on



Hypothesis Testing Using Pairwise Distances and Associated Kernels

probabilities. Consider again the family of distance
kernels Kρ, where the semimetric ρ is itself generated
from k according to (3). As we have seen, it may
be that k /∈ Kρ, however it is clear that γ2k(P,Q) =
1
2DE,ρ(P,Q) whenever k generates ρ. Thus, all ker-
nels that generate the same semimetric ρ on Z give
rise to the same metric γk on (possibly a subset of)
M1

+(Z), and γk is merely an extension of the met-
ric ρ1/2 on the point masses. The kernel-based and
distance-based methods are therefore equivalent, pro-
vided that we allow “distances” ρ which may not satisfy
the triangle inequality.

3.3. The Hilbert-Schmidt Independence
Criterion

Given a pair of jointly observed random variables
(X,Y ) with values in X × Y, the Hilbert-Schmidt In-
dependence Criterion (HSIC) is computed as the max-
imum mean discrepancy between the joint distribution
PXY and the product of its marginals PXPY . Let kX
and kY be kernels on X and Y, with respective RKHSs
HkX and HkY . Following Smola et al. (2007, Section
2.3), we consider the MMD associated to the kernel
k ((x, y) , (x′, y′)) = kX (x, x′)kY(y, y′) on X × Y with
RKHSHk isometrically isomorphic to the tensor prod-
uct HkX ⊗HkY . It follows that θ := γ2k(PXY , PXPY )
with

θ =
∥∥∥EXY [kX (·, X)⊗ kY(·, Y )]

−EXkX (·, X)⊗ EY kY(·, Y )
∥∥∥2
HkX⊗HkY

= EXY EX′Y ′kX (X,X ′)kY(Y, Y ′)

+EXEX′kX (X,X ′)EY EY ′kY(Y, Y ′)

−2EX′Y ′ [EXkX (X,X ′)EY kY(Y, Y ′)] ,

where in the last step we used that
〈f ⊗ g, f ′ ⊗ g′〉HkX⊗HkY = 〈f, f ′〉HkX 〈g, g

′〉HkX .
It can be shown that this quantity is the squared
Hilbert-Schmidt norm of the covariance operator be-
tween RKHSs (Gretton et al., 2005b). The following
theorem demonstrates the link between HSIC and the
distance covariance, and is proved in Appendix A.1.

Theorem 12. Let (X , ρX ) and (Y, ρY) be semimetric
spaces of negative type, and (x0, y0) ∈ X × Y. Define

k ((x, y) , (x′, y′))

:= [ρX (x, x0) + ρX (x′, x0)− ρX (x, x′)]×
[ρY(y, y0) + ρY(y′, y0)− ρY(y, y′)] . (9)

Then, k is a positive definite kernel on X × Y, and
γ2k(PXY , PXPY ) = V2

ρX ,ρY (X,Y ).

We remark that a similar result to Theorem 12 is given
by Lyons (2011, Proposition 3.16), but without mak-
ing use of the RKHS equivalence. Theorem 12 is a
more general statement, in the sense that we allow ρ
to be a semimetric of negative type, rather than a met-
ric. In addition to yielding a more general statement,
the RKHS equivalence leads to a significantly simpler
proof: the result is an immediate application of the
HSIC expansion of Smola et al. (2007).

4. Distinguishing Probability
Distributions

Lyons (2011, Theorem 3.20) shows that distance co-
variance in a metric space characterizes independence
if the metrics satisfy an additional property, termed
strong negative type. We will extend this notion to
a semimetric ρ. We will say that P ∈ M1

+(Z) has
a finite first moment w.r.t. ρ if

´
ρ(z, z0)dP is finite

for some z0 ∈ Z. It is easy to see that the integral´
ρ d ([P −Q]× [P −Q]) = −DE,ρ(P,Q) converges

whenever P and Q have finite first moments w.r.t.
ρ. In Appendix A.4, we show that this condition is
equivalent to EZ∼P k(Z,Z) < ∞, for a kernel k that
generates ρ, which implies the kernel embedding µk(P )
is also well defined.
Definition 13. The semimetric space (Z, ρ) is said
to have a strong negative type if ∀P,Q ∈M1

+(Z) with
finite first moment w.r.t. ρ,

P 6= Q⇒
ˆ
ρ d ([P −Q]× [P −Q]) < 0. (10)

The quantity in (10) is exactly −2γ2k(P,Q) for all P,Q
with finite first moment w.r.t. ρ. We directly obtain:
Proposition 14. Let kernel k generate ρ. Then (Z, ρ)
has a strong negative type if and only if k is character-
istic to all probability measures with finite first moment
w.r.t. ρ.

Thus, the problems of checking whether a semimetric
is of strong negative type and whether its associated
kernel is characteristic to an appropriate space of Borel
probability measures are equivalent. This conclusion
has some overlap with Lyons (2011): in particular,
Proposition 14 is stated in Lyons (2011, Proposition
3.10), where the barycenter map β is a kernel embed-
ding in our terminology, although Lyons does not con-
sider distribution embeddings in an RKHS.

5. Empirical Estimates and Hypothesis
Tests

In the case of two-sample testing, we are given i.i.d.
samples z = {zi}mi=1 ∼ P and w = {wi}ni=1 ∼ Q. The



Hypothesis Testing Using Pairwise Distances and Associated Kernels

empirical (biased) V-statistic estimate of (8) is

γ̂2k,V (z,w) =
1

m2

m∑
i=1

m∑
j=1

k(zi, zj) +
1

n2

n∑
i=1

n∑
j=1

k(wi, wj)

− 2

mn

m∑
i=1

n∑
j=1

k(zi, wj). (11)

Recall that if we use a distance kernel k induced by a
semimetric ρ, this estimate involves only the pairwise
ρ-distances between the sample points.

In the case of independence testing, we are given i.i.d.
samples z = {(xi, yi)}mi=1 ∼ PXY , and the resulting
V-statistic estimate (HSIC) is (Gretton et al., 2005a;
2008)

HSIC(z; kX , kY) =
1

m2
Tr(KXHKYH), (12)

where KX , KY and H are m × m matrices given
by (KX )ij := kX (xi, xj), (KY)ij := kY(yi, yj) and
Hij = δij − 1

m (centering matrix). As in the two-
sample case, if both kX and kY are distance kernels,
the test statistic involves only the pairwise distances
between the samples, i.e., kernel matrices in (12) may
be replaced by distance matrices.

We would like to design distance-based tests with an
asymptotic Type I error of α, and thus we require an
estimate of the (1− α)-quantile of the V-statistic dis-
tribution under the null hypothesis. Under the null
hypothesis, both (11) and (12) converge to a particular
weighted sum of chi-squared distributed independent
random variables (for more details, see Section A.2).
We investigate two approaches, both of which yield
consistent tests: a bootstrap approach (Arcones &
Giné, 1992), and a spectral approach (Gretton et al.,
2009a; Zhang et al., 2011). The latter requires em-
pirical computation of the spectrum of kernel integral
operators, a problem studied extensively in the con-
text of kernel PCA (Schölkopf et al., 1997). In the
two-sample case, one computes the eigenvalues of the
centred Gram matrix K̃ = HKH on the aggregated
samples. Here, K is a 2m × 2m matrix, with entries
Kij = k(ui, uj), u = [z w] is the concatenation of
the two samples and H is the centering matrix. Gret-
ton et al. (2009a) show that the null distribution de-
fined using these finite sample estimates converges to
the population distribution, provided that the spec-
trum is square-root summable. The same approach
can be used for a consistent finite sample null distri-
bution of HSIC, via computation of the eigenvalues of
K̃X = HKXH and K̃Y = HKYH (Zhang et al., 2011).

Both Székely & Rizzo (2004, p. 14) and Székely et al.
(2007, p. 2782–2783) establish that the energy dis-
tance and distance covariance statistics, respectively,

converge to a particular weighted sum of chi-squares
of form similar to that found for the kernel-based
statistics. Analogous results for the generalized dis-
tance covariance are presented by Lyons (2011, p. 7–
8). These works do not propose test designs that at-
tempt to estimate the coefficients in such represen-
tations of the null distribution, however (note also
that these coefficients have a more intuitive interpre-
tation using kernels). Besides the bootstrap, Székely
et al. (2007, Theorem 6) also proposes an independence
test using a bound applicable to a general quadratic
form Q of centered Gaussian random variables with
E[Q] = 1: P

{
Q ≥

(
Φ−1(1− α/2)2

)}
≤ α, valid for

0 < α ≤ 0.215. When applied to the distance co-
variance statistic, the upper bound of α is achieved
if X and Y are independent Bernoulli variables. The
authors remark that the resulting criterion might be
over-conservative. Thus, more sensitive tests are pos-
sible by computing the spectrum of the centred Gram
matrices associated to distance kernels, and we pursue
this approach in the next section.

6. Experiments

6.1. Two-sample Experiments

In the two-sample experiments, we investigate three
different kinds of synthetic data. In the first, we com-
pare two multivariate Gaussians, where the means dif-
fer in one dimension only, and all variances are equal.
In the second, we again compare two multivariate
Gaussians, but this time with identical means in all
dimensions, and variance that differs in a single dimen-
sion. In our third experiment, we use the benchmark
data of Sriperumbudur et al. (2009): one distribution
is a univariate Gaussian, and the second is a univari-
ate Gaussian with a sinusoidal perturbation of increas-
ing frequency (where higher frequencies correspond to
harder problems). All tests use a distance kernel in-
duced by the Euclidean distance. As shown on the left
plots in Figure 1, the spectral and bootstrap test de-
signs appear indistinguishable, and they significantly
outperform the test designed using the quadratic form
bound, which appears to be far too conservative for
the data sets considered. This is confirmed by check-
ing the Type I error of the quadratic form test, which
is significantly smaller than the test size of α = 0.05.

We also compare the performance to that of the Gaus-
sian kernel, with the bandwidth set to the median dis-
tance between points in the aggregation of samples.
We see that when the means differ, both tests perform
similarly. When the variances differ, it is clear that the
Gaussian kernel has a major advantage over the dis-
tance kernel, although this advantage decreases with
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Figure 1. (left) MMD using Gaussian and distance kernels
for various tests; (right) Spectral MMD using distance ker-
nels with various exponents. The number of samples in all
experiments was set to m = 200.

increasing dimension (where both perform poorly). In
the case of a sinusoidal perturbation, the performance
is again very similar.

In addition, following Example 8, we investigate the
performance of kernels obtained using the semimet-
ric ρ(z, z′) = ‖z − z′‖q for 0 < q ≤ 2. Results are
presented in the right hand plots of Figure 1. While
judiciously chosen values of q offer some improvement
in the cases of differing mean and variance, we see a
dramatic improvement for the sinusoidal perturbation,
compared with the case q = 1 and the Gaussian ker-
nel: values q = 1/3 (and smaller) yield virtually error-
free performance even at high frequencies (note that
q = 1 corresponds to the energy distance described in
Székely & Rizzo (2004; 2005)). Additional experiments
with real-world data are presented in Appendix A.6.

We observe from the simulation results that distance
kernels with higher exponents are advantageous in
cases where distributions differ in mean value along
a single dimension (with noise in the remainder),
whereas distance kernels with smaller exponents are
more sensitive to differences in distributions at finer
lengthscales (i.e., where the characteristic functions of
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Figure 2. HSIC using distance kernels with various expo-
nents and a Gaussian kernel as a function of (left) the angle
of rotation for the dependence induced by rotation; (right)
frequency ` in the sinusoidal dependence example.

the distributions differ at higher frequencies). This ob-
servation also appears to hold true on the real-world
data experiments in Appendix A.6.

6.2. Independence Experiments

To assess independence tests, we used an artificial
benchmark proposed by Gretton et al. (2008): we
generate univariate random variables from the ICA
benchmark densities of Bach & Jordan (2002); rotate
them in the product space by an angle between 0 and
π/4 to introduce dependence; fill additional dimen-
sions with independent Gaussian noise; and, finally,
pass the resulting multivariate data through random
and independent orthogonal transformations. The re-
sulting random variables X and Y are dependent but
uncorrelated. The case m = 1024 (sample size) and
d = 4 (dimension) is plotted in Figure 2 (left). As ob-
served by Gretton et al. (2009b), the Gaussian kernel
does better than the distance kernel with q = 1. By
varying q, however, we are able to obtain a wide range
of performance; in particular, the values q = 1/6 (and
smaller) have an advantage over the Gaussian kernel
on this dataset, especially in the case of smaller an-
gles of rotation. As for the two-sample case, bootstrap
and spectral tests have indistinguishable performance,
and are significantly more sensitive than the quadratic
form based test, which failed to reject the null hypoth-
esis of independence on this dataset.

In addition, we assess the test performance on sinu-
soidally dependent data. The distribution over the
random variable pair X,Y was drawn from PXY ∝
1 + sin(`x) sin(`y) for integer `, on the support X ×Y,
where X := [−π, π] and Y := [−π, π]. In this way, in-
creasing ` caused the departure from a uniform (inde-
pendent) distribution to occur at increasing frequen-
cies, making this departure harder to detect from a
small sample size. Results are in Figure 2 (right).
We note that the distance covariance outperforms the
Gaussian kernel on this example, and that smaller ex-
ponents result in better performance (lower Type II
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error when the departure from independence occurs
at higher frequencies). Finally, we note that the set-
ting q = 1, which is described in Székely et al. (2007);
Székely & Rizzo (2009), is a reasonable heuristic in
practice, but does not yield the most powerful tests on
either dataset.

7. Conclusion

We have established an equivalence between the energy
distance and distance covariance, and RKHS measures
of distance between distributions. In particular, en-
ergy distances and RKHS distance measures coincide
when the kernel is induced by a semimetric of nega-
tive type. The associated family of kernels performs
well in two-sample and independence testing: interest-
ingly, the parameter choice most commonly used in the
statistics literature does not yield the most powerful
tests in many settings.

The interpretation of the energy distance and distance
covariance in an RKHS setting should be of consider-
able interest both to statisticians and machine learning
researchers, since the associated kernels may be used
much more widely: in conditional dependence testing
and estimates of the chi-squared distance (Fukumizu
et al., 2008), in Bayesian inference (Fukumizu et al.,
2011), in mixture density estimation (Sriperumbudur,
2011) and in other machine learning applications. In
particular, the link with kernels makes these applica-
tions of the energy distance immediate and straight-
forward. Finally, for problem settings defined most
naturally in terms of distances, and where these dis-
tances are of negative type, there is an interpretation
in terms of reproducing kernels, and the learning ma-
chinery from the kernel literature can be brought to
bear.
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A. Appendix

A.1. Proofs

Proof. (Proposition 7) If z, z′ ∈ Z are such that
k(w, z) = k(w, z′), for all w ∈ Z, one would also have
ρ(z, z0) − ρ(z, w) = ρ(z′, z0) − ρ(z′, w), for all w ∈ Z.
In particular, by inserting w = z, and w = z′, we ob-
tain ρ(z, z′) = −ρ(z, z′) = 0, i.e., z = z′. The second
statement follows readily by expressing k in terms of
ρ.

Proof. (Theorem 11) Follows directly by inserting
the distance kernel from Lemma 6 into (8), and can-
celling out the terms dependant on a single random
variable. Define θ := γ2k(P,Q).

θ =
1

2
EZZ′ [ρ(Z, z0) + ρ(Z ′, z0)− ρ(Z,Z ′)]

+
1

2
EWW ′ [ρ(W, z0) + ρ(W ′, z0)− ρ(W,W ′)]

−EZW [ρ(Z, z0) + ρ(W, z0)− ρ(Z,W )]

= EZW ρ(Z,W )− EZZ′ρ(Z,Z ′)

2
− EWW ′ρ(W,W ′)

2
.

Proof. (Theorem 12) First, we note that k is a
valid reproducing kernel since k ((x, y) , (x′, y′)) =
kX (x, x′)kY(y, y′), where we have taken kX (x, x′) =
ρX (x, x0) + ρX (x′, x0) − ρX (x, x′), and kY(y, y′) =
ρY(y, y0) + ρY(y′, y0) − ρY(y, y′), as distance kernels
induced by ρX and ρY , respectively. Indeed, a prod-
uct of two reproducing kernels is always a valid re-
producing kernel on the product space (Steinwart &
Christmann, 2008, Lemma 4.6, p. 114). To show
equality to distance covariance, we start by expand-
ing θ := γ2k(PXY , PXPY ),

θ =

θ1︷ ︸︸ ︷
EXY EX′Y ′kX (X,X ′)kY(Y, Y ′)

+

θ2︷ ︸︸ ︷
EXEX′kX (X,X ′)EY EY ′kY(Y, Y ′)

−2

θ3︷ ︸︸ ︷
EX′Y ′ [EXkX (X,X ′)EY kY(Y, Y ′)] .

Note that

θ1 = EXY EX′Y ′ρX (X,X ′)ρY(Y, Y ′)

+2EXρX (X,x0)EY ρY(Y, y0)

+2EXY ρX (X,x0)ρY(Y, y0)

−2EXY [ρX (X,x0)EY ′ρY(Y, Y ′)]

−2EXY [ρY(Y, y0)EX′ρX (X,X ′)] ,

θ2 = EXEX′ρX (X,X ′)EY EY ′ρY(Y, Y ′)

+4EXρX (X,x0)EY ρY(Y, y0)

−2EXρX (X,x0)EY EY ′ρY(Y, Y ′)

−2EY ρY(Y, y0)EXEX′ρX (X,X ′),

and

θ3 = EX′Y ′ [EXρX (X,X ′)EY ρY(Y, Y ′)]

+3EXρX (X,x0)EY ρY(Y, y0)

+EXY ρX (X,x0)ρY(Y, y0)

−EXY [ρX (X,x0)EY ′ρY(Y, Y ′)]

−EXY [ρY(Y, y0)EX′ρX (X,X ′)]

−EXρX (X,x0)EY EY ′ρY(Y, Y ′)

−EY ρY(Y, y0)EXEX′ρX (X,X ′).

The claim now follows by inserting the resulting expan-
sions and cancelling the appropriate terms. Note that
only the leading terms in the expansions remain.

Remark 15. It turns out that k is not characteristic
to M1

+(X × Y) — i.e., it cannot distinguish between
any two distributions on X × Y, even if kX and kY
are characteristic. However, since γk is equal to the
Brownian distance covariance, we know that it can al-
ways distinguish between any PXY and its product
of marginals PXPY in the Euclidean case. Namely,
note that k((x0, y), (x0, y

′)) = k((x, y0), (x′, y0)) = 0
for all x, x′ ∈ X , y, y′ ∈ Y. That means that
for every two distinct PY , QY ∈ M1

+(Y), one has
γ2k(δx0

PY , δx0
QY ) = 0. Thus, kernel in (9) charac-

terizes independence but not equality of probability
measures on the product space. Informally speaking,
the independence testing is an easier problem than ho-
mogeneity testing on the product space.

A.2. Spectral Tests

Assume that the null hypothesis holds, i.e., that P =
Q. For a kernel k and a Borel probability mea-
sure P , define a kernel “centred” at P : k̃P (z, z′) :=
k(z, z′) +EWW ′k(W,W ′)−EW k(z,W )−EW k(z′,W ),
with W,W ′

i.i.d.∼ P . Note that as a special case for
P = δz0 we recover the family of kernels in (4), and
that EZZ′ k̃P (Z,Z ′) = 0, i.e., µk̃P (P ) = 0. The centred
kernel is important in characterizing the null distribu-
tion of the V-statistic. To the centred kernel k̃P on
domain Z, one associates the integral kernel operator
Sk̃P : L2

P (Z) → L2
P (Z) (see Steinwart & Christmann,

2008, p. 126–127), given by:

Sk̃P g(z)=

ˆ
Z
k̃P (z, w)g(w) dP (w). (13)

The following theorem is a special case of Gretton et al.
(2012, Theorem 12). For simplicity, we focus on the
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case where m = n.
Theorem 16. Let Z = {Zi}mi=1 and W = {Wi}mi=1 be
two i.i.d. samples from P ∈M1

+(Z), and let Sk̃P be a
trace class operator.Then

m

2
γ̂2k,V (Z,W) 

∞∑
i=1

λiN
2
i , (14)

where Ni
i.i.d.∼ N (0, 1), i ∈ N, and {λi}∞i=1 are the

eigenvalues of the operator Sk̃P .

Note that this result requires that the integral ker-
nel operator associated to the underlying probabil-
ity measure P is a trace class operator, i.e., that
EZ∼P k(Z,Z) <∞. As before, the sufficient condition
for this to hold for all probability measures is that k
is a bounded function. In the case of a distance ker-
nel, this is the case if the domain Z has a bounded
diameter with respect to the semimetric ρ, i.e., that
supz,z′∈Z ρ(z, z′) <∞.

The null distribution of HSIC takes an analogous form
to (14) of a weighted sum of chi-squares, but with co-
efficients corresponding to the products of the eigen-
values of integral operators Sk̃PX and Sk̃PY . The fol-
lowing Theorem is in Zhang et al. (2011, Theorem 4)
and gives an asymptotic form for the null distribution
of HSIC. See also Lyons (2011, Remark 2.9).
Theorem 17. Let Z = {(Xi, Yi)}mi=1 be an i.i.d. sam-
ple from PXY = PXPY , with values in X × Y. Let
Sk̃PX

: L2
PX

(X ) → L2
PX

(X ), and Sk̃PY
: L2

PY
(Y) →

L2
PY

(Y) be trace class operators. Then

mHSIC(Z; kX , kY) 
∞∑
i=1

∞∑
j=1

λiηjN
2
i,j , (15)

where Ni,j ∼ N (0, 1), i, j ∈ N, are independent and
{λi}∞i=1 and {ηj}∞j=1 are the eigenvalues of the opera-
tors Sk̃PX and Sk̃PY , respectively.

Note that if X and Y have bounded diameters w.r.t. ρX
and ρY , Theorem 17 applies to distance kernels in-
duced by ρX and ρY for all PX ∈ M1

+(X ), PY ∈
M1

+(Y) .

A.3. A Characteristic Function Based
Interpretation

The distance covariance in (7) was defined by Székely
et al. (2007) in terms of a weighted distance between
characteristic functions. We briefly review this inter-
pretation here, however we show that this approach
cannot be used to derive a kernel-based measure of de-
pendence (this result was first noted by Gretton et al.

(2009b), and is included here in the interests of com-
pleteness). Let X be a random vector on X =Rp and
Y a random vector on Y = Rq. The characteristic
function of X and Y , respectively, will be denoted by
fX and fY , and their joint characteristic function by
fXY . The distance covariance V(X,Y ) is defined via
the norm of fXY − fXfY in a weighted L2 space on
Rp+q, i.e.,

V2(X,Y ) =

ˆ
|fX,Y (t, s)− fX(t)fY (s)|2 w(t, s) dt ds,

(16)
for a particular choice of weight function given by

w(t, s) =
1

cpcq
· 1

‖t‖1+p ‖s‖1+q
, (17)

where cd = π
1+d
2 /Γ( 1+d

2 ), d ≥ 1. An important aspect
of distance covariance is that V(X,Y ) = 0 if and only
if X and Y are independent. We next obtain a similar
statistic in the kernel setting. Write Z = X × Y, and
let k(z, z′) = κ(z−z′) be a translation invariant RKHS
kernel on Z, where κ : Z → R is a bounded continuous
function. Using Bochner’s theorem, κ can be written
as:

κ(z) =

ˆ
e−z

>udΛ(u),

for a finite non-negative Borel measure Λ. It follows
Gretton et al. (2009b) that

γ2k(PXY , PXPY ) =

ˆ
|fX,Y (t, s)− fX(t)fY (s)|2 dΛ(t, s),

which is in clear correspondence with (16). However,
the weight function in (17) is not integrable — so one
cannot find a translation invariant kernel for which γk
coincides with the distance covariance. By contrast,
note the kernel in (9) is not translation invariant.

A.4. Restriction on Probability Measures

In general, distance kernels and their products are con-
tinuous but unbounded, so kernel embeddings are not
defined for all Borel probability measures. Thus, one
needs to restrict the attention to a particular class of
Borel probability measures for which kernel embed-
dings exist, and a sufficient condition for this is that
EZ∼P k1/2(Z,Z) <∞, by the Riesz representation the-
orem. Let k be a measurable reproducing kernel on Z,
and denote, for θ > 0,

Mθ
k(Z) =

{
ν ∈M(Z) :

ˆ
kθ(z, z) d |ν| (z) <∞

}
. (18)

Note that the maximum mean discrepancy γk(P,Q)

is well defined ∀P,Q ∈M1/2
k (Z) ∩M1

+(Z).
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Now, let ρ be a semimetric of negative type. Then,
we can consider the class of probability measures that
have a finite θ-moment with respect to ρ:

Mθ
ρ(Z) = {ν ∈M(Z) : ∃z0 ∈ Z, (19)

s.t.

ˆ
ρθ(z, z0) d |ν| (z) <∞}.

To ensure existence of energy distance DE,ρ(P,Q),
we need to assume that P,Q ∈ M1

θ(Z), as other-
wise expectations EZZ′ρ(Z,Z ′), EWW ′ρ(W,W ′) and
EZW ρ(Z,W ) may be undefined. The following propo-
sition shows that the classes of probability measures in
(18) and (19) coincide at θ = n/2, for n ∈ N, whenever
ρ is generated by kernel k.

Proposition 18. Let k be a kernel that generates
semimetric ρ, and let n ∈ N. Then, Mn/2

k (Z) =

Mn/2
θ (Z). In particular, if k1 and k2 generate the

same semimetric ρ, then Mn/2
k1

(Z) =Mn/2
k2

(Z).

Proof. Let θ ≥ 1
2 . Note that a2θ is a convex function

of a. Suppose ν ∈Mθ
k(Z). Then, we have

ˆ
ρθ(z, z0) d|ν|(z)

=

ˆ
‖k(·, z)− k(·, x0)‖2θHk d|ν|(z)

≤
ˆ

(‖k(·, z)‖Hk + ‖k(·, z0)‖Hk )
2θ d|ν|(z)

≤ 22θ−1

(ˆ
‖k(·, z)‖2θHk d|ν|(z) +

ˆ
‖k(·, z0)‖2θHk d|ν|(z)

)
= 22θ−1

(ˆ
kθ(z, z) d|ν|(z) + kθ(z0, z0)|ν|(Z)

)
< ∞,

where we have invoked the Jensen’s inequality for
convex functions. From the above it is clear that
Mθ

k(Z) ⊂Mθ
ρ(Z), for θ ≥ 1/2.

To prove the other direction, we show by induction
thatMθ

ρ(Z) ⊂Mn/2
k (Z) for θ ≥ n

2 , n ∈ N. Let n = 1.
Let θ ≥ 1

2 , and suppose that ν ∈ Mθ
ρ(X ). Then, by

invoking the reverse triangle and Jensen’s inequalities,
we have:
ˆ
ρθ(z, z0)d |ν| (z) =

ˆ
‖k(·, z)− k(·, z0)‖2θHk d|ν|(z)

≥
ˆ ∣∣∣k1/2(z, z)− k1/2(z0, z0)

∣∣∣2θ d|ν|(z)
≥
∣∣∣ˆ k1/2(z, z) d|ν|(z)− ‖ν‖TV k

1/2(z0, z0)
∣∣∣2θ,

which implies ν ∈ M1/2
k (Z), thereby satisfying the

result for n = 1. Suppose the result holds for θ ≥

n−1
2 , i.e., Mθ

ρ(Z) ⊂ M(n−1)/2
k (Z) for θ ≥ n−1

2 . Let
ν ∈Mθ

ρ(Z) for θ ≥ n
2 . Then we have

ˆ
ρθ(z, z0) d|ν|(z)

=

ˆ (
‖k(·, z)− k(·, z0)‖nHk

) 2θ
n d|ν|(z)

≥
(ˆ
‖k(·, z)− k(·, z0)‖nHk d|ν|(z)

) 2θ
n

≥
(ˆ
|‖k(·, z)‖Hk − ‖k(·, z0)‖Hk |

n d|ν|(z)
) 2θ
n

≥
∣∣∣∣ˆ (‖k(·, z)‖Hk − ‖k(·, z0)‖Hk )

n d|ν|(z)
∣∣∣∣ 2θn

=

∣∣∣∣∣
ˆ n∑

r=0

(−1)r
(
n
r

)
‖k(·, z)‖n−rHk ‖k(·, z0)‖

r
Hk d|ν|(z)

∣∣∣∣∣
2θ
n

=

∣∣∣∣∣
ˆ
k
n
2 (z, z) d|ν|(z)︸ ︷︷ ︸

A

+

n∑
r=1

(−1)r
(
n
r

)
k
r
2 (z0, z0)

ˆ
k
n−r
2 (z, z) d|ν|(z)︸ ︷︷ ︸

B

∣∣∣∣∣
2θ
n

.

Note that the terms in B are finite as for θ ≥ n
2 ≥

n−1
2 ≥ · · · ≥ 1

2 , we have Mθ
ρ(Z) ⊂ M(n−1)/2

k (Z) ⊂
· · · ⊂ M1

k(Z) ⊂ M1/2
k (Z) and therefore A is finite,

which means ν ∈ Mn/2
k (Z), i.e., Mθ

ρ(Z) ⊂ Mn/2
k (Z)

for θ ≥ n
2 . The result shows that Mθ

ρ(Z) = Mθ
k(Z)

for all θ ∈ {n2 : n ∈ N}.

The above Proposition gives a natural interpretation
of conditions on probability measures in terms of mo-
ments w.r.t. ρ. Namely, the kernel embedding µk(P ),
where kernel k generates the semimetric ρ, exists for
every P with finite half-moment w.r.t. ρ, and thus,
MMD between P andQ, γk(P,Q) is well defined when-
ever both P and Q have finite half-moments w.r.t. ρ.
If, in addition, P and Q have finite first moments
w.r.t. ρ, then the ρ-energy distance between P and Q
is also well defined and it must be equal to the MMD,
by Theorem 11.

Rather than imposing the condition on Borel prob-
ability measures, one may assume that the underly-
ing semimetric space (Z, ρ) of negative type is itself
bounded, i.e., that supz,z′∈Z ρ(z, z′) < ∞, implying
that distance kernels are bounded functions, and that
both MMD and energy distance are always defined.
Conversely, bounded kernels (such as Gaussian) always
induce bounded semimetrics.
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Table 1. MMD with distance kernels on data from Gretton et al. (2009a). Dimensionality is: Neural I (64), Neural II
(100), Health status (12,600), Subtype (2,118). The boldface denotes instances where distance kernel had smaller Type II
error in comparison to Gaussian kernel.

Gauss dist (1/3) dist (2/3) dist (1) dist (4/3) dist (5/3) dist (2)

Neural I 1- Type I .956 .969 .964 .949 .952 .959 .959
(m = 200) Type II .118 .170 .139 .119 .109 .089 .117
Neural I 1- Type I .950 .969 .946 .962 .947 .930 .953
(m = 250) Type II .063 .075 .045 .041 .040 .065 .052
Neural II 1- Type I .956 .968 .965 .963 .956 .958 .943
(m = 200) Type II .292 .485 .346 .319 .297 .280 .290
Neural II 1- Type I .963 .980 .968 .950 .952 .960 .941
(m = 250) Type II .195 .323 .197 .189 .194 .169 .183
Subtype 1- Type I .975 .974 .977 .971 .966 .962 .966
(m = 10) Type II .055 .828 .237 .092 .042 .033 .024
Health st. 1- Type I .958 .980 .953 .940 .954 .954 .955
(m = 20) Type II .036 .037 .039 .081 .114 .120 .165

A.5. Distance Correlation

The notion of distance covariance extends naturally
to that of distance variance V2(X) = V2(X,X) and
that of distance correlation (in analogy to the Pearson
product-moment correlation coefficient):

R2(X,Y ) =

{
V2(X,Y )
V(X)V(Y ) , V(X)V(Y ) > 0,

0, V(X)V(Y ) = 0.

Distance correlation also has a straightforward inter-
pretation in terms of kernels as:

R2(X,Y ) =
V2(X,Y )

V(X)V(Y )

=
γ2k(PXY , PXPY )

γk(PXX , PXPX)γk(PY Y , PY PY )

=
‖ΣXY ‖2HS

‖ΣXX‖HS ‖ΣY Y ‖HS
,

where covariance operator ΣXY : HkX → HkY
is a linear operator for which 〈ΣXY f, g〉HkY =

EXY [f(X)g(Y )] − EXf(X)EY g(Y ), for all f ∈ HkX
and g ∈ HkY , and ‖·‖HS denotes the Hilbert-Schmidt
norm (Gretton et al., 2005b). It is clear that R
is invariant to scaling (X,Y ) 7→ (εX, εY ), ε > 0,
whenever the corresponding semimetrics are homoge-
neous, i.e., whenever ρX (εx, εx′) = ερX (x, x′), and
similarly for ρY . Moreover, R is invariant to trans-
lations (X,Y ) 7→ (X + x′, Y + y′), x′ ∈ X , y′ ∈ Y,
whenever ρX and ρY are translation invariant.

A.6. Further Experiments

We assessed performance of two-sample tests based on
distance kernels with various exponents and compared

it to that of a Gaussian kernel on real-world multi-
variate datasets: Health st. (microarray data from
normal and tumor tissues), Subtype (microarray data
from different subtypes of cancer) and Neural I/II (lo-
cal field potential (LFP) electrode recordings from the
Macaque primary visual cortex (V1) with and without
spike events), all discussed in Gretton et al. (2009a).
In contrast to Gretton et al. (2009a), we used smaller
sample sizes, so that some Type II error persists. At
higher sample sizes, all tests exhibit Type II error
which is virtually zero. The results are reported in
Table 1 below. We used the spectral test for all ex-
periments, and the reported averages are obtained by
running 1000 trials. We note that for dataset Subtype
which is high dimensional but with only a small num-
ber of dimensions varying in mean, a larger exponent
results in a test of greater power.


