
Combinatorial Channel Signature Modulation for
Wireless ad-hoc Networks

Robert J. Piechocki
Merchant Venturers School of Engineering

University of Bristol

Woodland Rd, Bristol, BS8 1UB, UK

Email: r.j.piechocki@bristol.ac.uk

Dino Sejdinovic
Gatsby Computational Neuroscience Unit

University College London

17 Queen Square, London, WC1N 3AR, UK

Email: dino@gatsby.ucl.ac.uk

Abstract—In this paper we introduce a novel modulation
and multiplexing method which facilitates highly efficient and
simultaneous communication between multiple terminals in wire-
less ad-hoc networks. We term this method Combinatorial
Channel Signature Modulation (CCSM). The CCSM method is
particularly efficient in situations where communicating nodes
operate in highly time dispersive environments. This is all
achieved with a minimal MAC layer overhead, since all users are
allowed to transmit and receive at the same time/frequency (full
simultaneous duplex). The CCSM method has its roots in sparse
modelling and the receiver is based on compressive sampling
techniques. Towards this end, we develop a new low complexity
algorithm termed Group Subspace Pursuit. Our analysis suggests
that CCSM at least doubles the throughput when compared to
the state-of-the art.

I. INTRODUCTION

Time dispersion has traditionally posed a very challenging

problem for communications systems. Typical examples of

highly time dispersive channels include wireless systems with

large bandwidth, power line communication (e.g. for Smart

Grids), underwater channels etc. The currently favoured state-

of-the-art solution is typified by OFDM and SC-FDE systems

(e.g., 4G mobile systems, WiFi). Other existing solutions

include: equalisation in single carrier receivers (e.g., 2G mo-

bile systems) and rake receivers for CDMA (e.g., 3G mobile

systems). In all those techniques time dispersion represents a

hindrance to a larger or smaller extent. The system described

here thrives on the dispersive nature of communications chan-

nels and turns it into an advantage.

MAC Layer coordination is another source of inefficiencies

in communications systems. The MAC protocol regulates

how competing users access a shared resource (e.g. a radio

channel). In a standard solution only a single user can oc-

cupy a shared resource; otherwise a “collision” occurs. The

most important MAC protocols include CSMA/CA (e.g. IEEE

802.11x) or (slotted) Aloha. The DS-CDMA system somewhat

relaxes this constraint by allowing a group of synchronised

users to transmit at the same time and in the same frequency

(in the same cell). However, synchronisation is very difficult

to achieve in an ad-hoc network. The CCSM method does not

require a complicated MAC layer coordination mechanism.

The CCSM allows all users to transmit signals at the same

time, therefore no coordination is needed. Another highly

beneficial feature is the ability to achieve a true duplex, i.e.

all users in the network can transmit and receive signals at the

same frequency and in the same time slot.

The CCSM method is inspired by a cross-layer scheme for

wireless peer-to-peer mutual broadcast considered by Zhang

and Guo in [1]. In this paper each node is assigned a code-

book of on-off signalling codewords, such that every possible

message corresponds to a single codeword. However, the

scheme by Zhang and Guo is suitable only “for the situation

where broadcast messages consist of a relatively small number

of bits”. Namely, the size of the sparse recovery problem

which needs to be solved is exponential in the length of the

message. Our scheme overcomes this limitation by encoding

the message in a combination of the codeword span, i.e., in a

choice of l out of L codewords in the codeword span, where

l ≪ L. Such representation of useful information results in a

significant reduction of the computational complexity1, as the

number of possible messages is expressed through a number

of all possible combinations, which is
(

L
l

)

. This, in turn,

renders our scheme practical for broadcasting much longer

messages. Moreover, in CCSM additional information can be

encoded in the choice of the weights assigned to a particular

combination of the codeword span. In addition, the scheme

of [1] cannot cope with time dispersive environments. Our

scheme, in contrast, thrives on dispersive nature of wireless

systems, by adapting the sparse recovery problem to the

channel signatures.

Combinatorial modulation constructions have been pre-

viously considered in optical communication systems. A

throughput efficient version of pulse-position modulation

(PPM) signalling scheme is called multipulse or combinato-

rial PPM (MPPM) [9], [10], [11]. However, MPPM applies

such information representation directly in time domain using

single pulses. The MPPM signalling is inherently sensitive

1In the set-up by Zhang and Guo, the size of the sparse vector to be
recovered is L · N , where L is the number of all possible messages, and
N is the number od users. This means that each message has logL nats of
information. On the other hand, the same size of the problem in our scheme
results in the message length of log

(L
l

)

nats of information for appropriately

chosen l ≪ L. If, for example, l = L1/2, the standard bounds on the
binomial coefficients yield log

(L
l

)

= O(L1/2 logL1/2). Assuming N fixed,
the sparse recovery problem size is now only quadratic in the number of nats
of information per message.
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Figure 1. Simple example of a codebook and construction of the transmitted
signal.

to multipath interference, time dispersion and multiple access

interference (MAI) [12]. Whereas MPPM signalling typically

uses a maximum-likelihood receiver [11], which involves an

optimisation problem over the set of all binary sequences of

length L having weight l, which becomes intractable even for

moderate values of L and l, the CCSM method utilizes fast

reconstruction methods based on sparse recovery solvers [2],

[3] found in the field of compressed sensing [5], [4].

II. SIGNALING MODULATION AND CODEBOOK DESIGN

A. System Overview

To improve the clarity of presentation we describe our

system using toy examples in baseband signaling. However,

the system is equally applicable to pass-band signaling, which,

in fact, we use in the following sections.

Each of the users constructs its transmitted signal using

a codeword span known to all intended receivers. Figure 1

depicts an example of the codeword span with L = 6. The

message to be transmitted is encoded in an l-combination of

the codeword span, i.e., in a choice of l out of L codewords in

the codeword span, where l ≪ L. Note that there are
(

L
l

)

=
L!

l!(L−l)! such combinations. Specifically, the transmitted signal

is a weighted sum of the chosen waveforms. In base-band, the

weights could be points in Amplitude Shift Keying (ASK)

modulation e.g. {+1,−1}. In the provided example in Figure

1, l = 2 waveforms are chosen: first and third (depicted in

red). Both weights happen to be +1. The transmitted waveform

is the sum of the two (brown line). The information rate of

this signaling scheme is thus R = 1
W

(

log2

(

L
l

)

+ lq
)

bits/s,

where W is the time duration of the waveforms in seconds,

and 2q is the size of the alphabet of weights.

This particular construction of constituent waveforms (code-

word span), combinatorial construction of the transmitted

signal and the fact that l ≪ L all play a crucial part since

they allow very efficient decoding, MAC-less user coordina-

tion and full duplex operation for each user. A key feature

of the constituent waveforms is sparsity i.e. the waveforms

Transmitted
codeword
by user 2

Modified
codeword
span

Received waveform by
user 2 (from user 1)

Figure 2. Simple example of a receiver codebook.

are constructed from very short bursts of digital modulation

signals. We emphasize, it is not the digital signal which carries

useful information - the information rate is the same no matter

what modulation (BPSK, QPSK, 16-QAM etc) we choose to

construct the waveforms. It is the choice of the l-combination

of the codeword span and of the associated weights which

carries the information.

The transmitted waveform is propagated in a dispersive

channel (depicted as a green line) and received as a convo-

lution of the two (black line). The implicit assumption here

is that the channel can be modelled as a linear time invariant

channel (FIR filter). Such an assumption is a commonplace in

the literature and in practice.

The CCSM method relies on the linearity property of

convolution. The receiver reconstructs a modified codeword

span – blue waveforms in Figure 2, where each waveform

in the original codeword span is convolved with the channel

signature. The task for the receiver is to estimate which l
waveforms were used by the transmitter. The whole detection

process can be performed efficiently using sparse recovery

solvers. The transmitted waveform is essentially a sequence

of on-off duty cycles, where for most of the time there are

silent periods (“off cycles”). Each user utilises its “off cycles”

to receive signals from the other users. In the “on cycles”,

however, the user cannot receive the signal, which represents

an erasure in the codebook. This is depicted in Figure 2 as

the doted boxes. Only non-erased portions of the codebook are

used in the detection process. Technically, with this scheme

the Rx/Tx chains do not operate simultaneously. Furthermore,

the explicit assumption is that the nodes operate fast switching

(at the symbol rate) between Rx/Tx, which is indeed possible

with the current RF technology.

B. Constant Weight Codes

The CCSM requires a non-linear encoding operation. The

process of mapping the information vectors at each user

to a unique l-combination of the codeword span can be

viewed as constant (hamming) weight coding (CWC). The
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Figure 3. CCSM encoder at the i-th user.

problem of efficient encoding and decoding constant-weight

vectors received significant interest in the literature. There

are practical algorithms of computational complexity linear

in the length L of constant weight vectors, which are based

on lexicographic ordering and enumeration [6]. However,

the approach particularly suitable for our system is that of

[7], as its complexity is quadratic in the weight of constant

weight vectors, which fares favourably in comparison to the

enumeration approach in the case where l ≪ L. In [7], authors

pursue geometric representation of information vectors in an

l-dimensional Euclidean space and establish bijective maps by

dissecting certain polytopes in this space.

C. CCSM Encoder

Consider a network of N + 1 users denoted 0, 1, . . . , N ,

each of which has a k + lq bit message to transmit to all

others through a wireless medium using the same single carrier

frequency. Denote by M the number of transmissions, and

by ωi ∈ F
k+lq
2 the message at user i. It is assumed that

users are equipped with an encoder, which constitutes of

bijective maps φC and φw. The first map, φC : F
k
2 → C,

maps k-bit binary words into an (L, l) constant weight binary

code C ⊆ {c ∈ FL
2 : wH(c) = l}. The second map

φw : F
lq
2 × C → CL assigns complex-numbered values to

the non-zero entries in a constant weight binary codeword

from C. For simplicity, we may assume that C consists of

all possible
(

L
l

)

constant weight codewords, in which case we

can take k = ⌊log2
(

L
l

)

⌋. Each user i is assigned a signaling

dictionary Si = (si,1, si,2, . . . , si,L), where each si,j ∈ CM

is a sparse column vector. (Columns of the matrix Si can be

thought of as sampled waveforms constituting the codeword

span in Fig. 1.) Each user has perfect knowledge of all N +1
signaling dictionaries. Furthermore, each user i has a perfect

knowledge of the channel impulse responses hi,j ∈ CM of the

channel between users j and i, and of its own channel impulse

response hi,i ∈ CM , which we refer to as a “self-channel”.

(“Self-channel” can be thought of as a “radar return”, and its

role is explained in the description of the CCSM decoder.)

We remark that the signalling dictionary Si at user i can be

judiciously optimized to suit the preferred choice of system

.
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Figure 4. CCSM decoder for at i-th user.

parameters. In the sequel, we will consider the following

construction: all columns of Si have equal number of non-

zero entries, set to
⌊

M
L

⌋

, and non-zero entries are selected

uniformly at random from a predefined constellation, e.g, from

the set {+1,−1}. Moreover, every two columns in Si have

disjoint support. This way, as the transmitted codeword xi

is formed as a weighted sum of exactly l columns in Si,

the transmitted codeword will have exactly l ·
⌊

M
L

⌋

non-zero

entries, implying that every user i will have exactly l ·
⌊

M
L

⌋

on-slots and will use its M̃ = M− l ·
⌊

M
L

⌋

off-slots to listen to

the incoming signals of other users. Another way to construct

a signalling dictionary would be to apply a regular Gallager

construction, which was originally developed for LDPC codes

(cf., e.g., Ch. VI of [13] and references therein).

Figure 3 depicts a CCSM encoder at user i. The encoding

three-step procedure is summarized below2:

1) User i encodes bi := φC(ωi,1:k) using a CWC code.

2) Further lq bits are encoded on non-zero entries

in bi, i.e., ci := φw(ωi,k+1:k+lq ,bi) =
φw(ωi,k+1:k+lq , φC(ωi,1:k)). This is based on a

bijective map that assigns a different complex number

to each binary sequence of length q, which can be

thought of as a QAM modulation with 2q constellation

points.

3) User i transmits xi = Sici, where the matrix-vector

multiplication Sici is performed over C.

D. CCSM Decoder

Figure 4 depicts a CCSM decoder at user i. The CCSM de-

coder receives a superposition of all signals from all intended

transmitters, i.e., users j 6= i. As aforementioned, the receiver

does not receive the signal in on-cycles (when it transmits),

which is represented by the erasure channel. Upon removing

the self interference components, the CCSM decoder employs

a sparse recovery solver.

Specifically, the recovery at node i proceeds as follows:

2Throughout the paper, for a, b ∈ N, a ≤ b, a : b denotes the set
{a, a+ 1, . . . , b}, and for a vector x, and set of indices A, xA := (xa)a∈A.



1) Define an erasure pattern vector as ei =∼ 1 (xi), where

1 (υ) = 0 if υ = 0 and 1 (υ) = 1 otherwise. Define

an erasure matrix Ei, produced from IM,M identity

matrix, by removing rows where corresponding ei has

zero entry. Denote the number of rows in Ei by M̃ .

2) User i using off-duty cycles receives:

ỹi = Ei





N
∑

j=0,j 6=i

hi,j ∗ Sjcj + z̃i



+Ei (hi,i ∗ Sici) ,

(1)

where ” ∗ ” symbol denotes convolution truncated to M
time slots and z̃i represents the additive Gaussian noise

over M time slots.

3) Since each user switches into reception mode in be-

tween transmitting short bursts, there would be echoes

of its own transmitted signal in the received signal

(self interference). However, all users know their own

transmitted signal and can therefore subtract the term

Ei (hi,i ∗ Sici) in eq. (1) as long as they know the “self

channel”.

yi = ỹi −Ei (hi,i ∗ Sici) = A−iv−i + zi, (2)

where zi = Eiz̃i, v−i is the NL-column vector formed

by concatenating vertically c0, c1,..., ci−1,ci+1,...cN ,

i.e., v−i =
[

c⊤0 |c
⊤
1 | . . . |c

⊤
i−1|c

⊤
i+1| . . . |c

⊤
N

]⊤
and A−i is

an M̃ ×NL matrix, given by:

A−i = Ei

[

hi,0 ∗ S0|hi,1 ∗ S1| · · · (3)

|hi,i−1 ∗ Si−1|hi,i+1 ∗ Si+1| · · · |hi,N ∗ SN

]

.

Note that the matrix A−i can be calculated offline, as it

depends only on the channel impulse responses and the

signaling dictionaries. Therefore, it needs to be updated

only when the channel impulse response changes.

4) User i needs to solve the following problem to detect

the desired signal:

v̂−i = argmin
v
−i

‖yi −A−iv−i‖2

s.t. ‖cj‖0 = l, for all j 6= i, (4)

This is a non-convex optimisation problem. However,

we note that exactly Nl out of NL entries in v−i

are non zero, hence its sparsity level is by the initial

assumption l
L ≪ 1. This set-up is found in compressive

sensing (CS) problems, and thus one can apply a range

of efficient sparse recovery solvers available in the

literature to find an approximate solution to eq. (4),

which we discuss in the next Section.

5) Finally, user i decodes the messages for all j 6= i:

(ω̂j,k+1:k+lq , b̂j) = φ−1
w (ĉj),

ω̂j,1:k = φ−1
C (b̂j).

III. SPARSE RECOVERY FOR CCSM

We recall that each user i is required to solve the sparse re-

covery problem (4) in order to correctly detect the transmitted

messages. This is a non-convex and intractable optimization

problem. However, in the spirit of the compressed sensing

framework, one can apply a convex relaxation, by replacing

the L0 norm with the L1 norm:

v̂−i = argmin
v
−i

‖yi −A−iv−i‖2

s.t. ‖cj‖1 = l, for all j 6= i. (5)

We will refer to the convex relaxation in 5 as Group Basis

Pursuit (GBP). Furthermore, one can employ an even simpler

form of the convex relaxation, i.e., a standard embodiment of

the LASSO/Basis Pursuit (BP):

v̂−i = argmin
v
−i

‖yi −A−iv−i‖2

s.t. ‖v−i‖1 ≤ lN, (6)

where the group structure of non-zero entries in v−i is omitted,

but can be enforced after solving (6).

Another method to solve our original problem (4), is to

employ a greedy iterative sparse recovery algorithm. A number

of such algorithms have appeared in the literature including

Compressive Sampling Matching Pursuit (CoSaMP) [2] and

Subspace Pursuit (SP) [3]. These algorithms can be enhanced

to take into account the additional group structure of the

unknown vector, which is imposed by our system set-up.

Namely, in addition to the unknown vector v−i having lN
non-zero entries, each of its N subvectors cj of length L,

has exactly l non-zero entries. In Algorithm 1, we present

the modification of Subspace Pursuit, which we name Group

Subspace Pursuit (GSP). For simplicity and without loss of

generality, we present the GSP as applied to the sparse

recovery problem at user i = 0. The GSP is a low complexity

method, which has computational complexity of Least Square

estimator of size lN , and is vastly more computationally

efficient than convex optimisation based methods, including

Group Basis Pursuit (GBP) and Basis Pursuit (BP).

Figure 5 depicts performance of the three sparse solvers for

group CS set-up. In this study there are (N +1) = 10 groups,

and in each group l = 4 out of L = 32 elements are non zero.

This investigation was performed for three under sampling

ratios for each of those reconstruction methods. For example,

BP-100 signifies the Basis Pursuit solver on a Complex Gaus-

sian dense measurement matrix with size 100× 320 (i.e. 31%

under sampling ratio). The non-zero elements in the unknown

vector are drawn from a QPSK modulation set. The error event

is defined as any symbol error in the group. For low under



Algorithm 1 Group Subspace Pursuit (GSP).

• Input. A waveform y0 ∈ CM̃ at user 0, received during the off-duty
cycles, with the self-interference component removed, CIR/Signaling

matrix A−0 ∈ CM̃×NL, CCSM parameters L and l.
• Output. Vector v̂−0 consisting of N subvectors cj of length L, each

having exactly l non-zero entries.

1) Initialize. Set r0 = y0, t = 1, T0 = Ø.
2) Identify. For each j = 1, . . . , N , set Uj to the l indices largest in

magnitude in the j-th L-sub-vector of A∗
−0rt−1, i.e.,

Uj ∈ argmax
W

{

∑

w∈W

|〈rt−1,a−0,w〉| :

W ⊂ [(j − 1)L + 1 : jL], |W| = l

}

.

3) Merge. Put the old and new columns into one set: U = Tt−1 ∪
(

⋃N
j=1 Uj

)

.

4) Estimate. Solve the least-squares problem on the chosen column-set:

v′
U = argmin

v

∥

∥A−0,Uv − rt−1

∥

∥

2

v′
[1:N]\U = 0

5) Prune. Retain the l coefficients largest in magnitude in each L-sub-
vector of v′, i.e.,

Uj ∈ argmax
W

{

∑

w∈W

∣

∣v′
w

∣

∣ :

W ⊂ [(j − 1)L + 1 : jL], |W| = l

}

.

to obtain the support estimate Tt =
⋃N

j=1 Uj .
6) Iterate. Find the t-th estimate and update the residual:

vt,Tt
= argmin

v

∥

∥A−0,Tt
v − rt−1

∥

∥

2

vt,[1:N]\Tt
= 0

rt = y0 −A−0vt

Set t← t+ 1 and repeat (2)-(6) until stopping criterion holds.
7) Output. Return v̂−0 = vt.
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Figure 6. Performance of the proposed method in terms of message erorr
rate: In this case there are (N + 1) = 5 users simultaneously broadcasting
messages using CCSM with L = 64, l = 12.

sampling ratios, Group Basis Pursuit performs best. However,

for moderate and larger values, our Group Subspace Pursuit

is almost the same. Therefore, given its low complexity, we

apply GSP to analyse the CCSM performance in the sequel.

IV. NUMERICAL RESULTS

In this section we report numerical results of the proposed

method and quantitative comparison with the state-of-the-art.

We consider a multi-user wireless network with N +1 nodes,

where all users are within radio range of each other. All users

attempt to broadcast a message to all other nodes. We assume

a very dispersive channel, modelled by an FIR filter with

32 taps, with exponentially decaying profile. Moreover, we

assume that each pair of nodes has an independent channel.

We set L = 64, l = 12, and use QPSK signalling (q = 2),

i.e., each message contains
⌊

log2
(

L
l

)

⌋

+ lq = 65 bits. Figure

6 depicts the performance of the proposed method for 5 users

in terms of message error rate (MER) as a function of signal-

to-noise ratio, for various values of the number M of available

symbol intervals. The MER is an empirical probability estimate

of a failure occurring in the message delivery. We remark that

the values of MER could be further decreased by the use of

outer coding.

To further assess the performance of the CCSM method, we

compare its achieved throughput to the throughput estimates

of what would be the best hypothetical solutions, constructed

using the state-of-the-art in an idealised scenario. As before,

we assume that the transmission occurrs over a time dispersive

channel, modelled by an FIR filter with 32 taps, but, in order

to make a fair comparison to MAC protocols below, without

any additive noise. Achieved throughput of CCSM in bits per

symbol interval, given by (N +1) · 65/Mmin, where Mmin is

the minimum number of symbol intervals at which no message

errors occurred in at least 100,000 simulation trials, is plotted

in Fig. 7. We note that the throughput performance of the

CCSM is insensitive to the number of users in the network.



First hypothetical system we consider exploits a central

controlling mechanism that closely coordinates transmissions

between all users, using a TDMA channel access. To avoid

interference the total transmission time would be divided

equally into N + 1 non overlapping slots. Each user would

broadcast its message to all other users in its designated

slot, and receive messages from all other users in remaining

N slots. To cope with the dispersive channel nature, such

system would need to use FDE/OFDM. A typical FDE/OFDM

system requires a guard interval (cyclic prefix) of about 20%

slot duration. However, in reality, additional guard intervals

would be needed, and close coordination between nodes

implies additional overheads. When compared even to this

idealised and highly impractical system, our method offers

a better throughput, as each message transmission requires
⌈

65/2
0.8

⌉

= 41 symbol intervals, which results in the throughput

of 65/41 = 1.58 bits per symbol interval regardless of the

number of users in the network.
However, in most cases, such a central controlling mech-

anism would be unavailable, and the second, more realistic,

benchmarking system we consider is based instead on dis-

tributed coordination function (DCF) and CSMA/CA [14],

more specifically on DCF as used in IEEE 802.11b MAC

in broadcasting mode. Such system relies on the randomised

deferment of transmissions in order to avoid collisions on a

shared wireless medium. Since we assume that all users are

within radio range of each other, there is no inefficiency result-

ing from hidden/exposed terminals, thus we employ only the

basic access mechanism of CSMA/CA protocol. In addition,

we assume that each message transmission contains a guard

interval of about 20% slot duration to cope with the dispersive

channel nature, so that each message transmission requires

41 symbol intervals as above. The minimum and maximum

contention windows of CSMA/CA are assumed to consist of

16 and 1024 symbol intervals, respectively. We consider an

idealised version of the protocol where no symbol intervals are

wasted on distributed or short interframe space (DIFS/SIFS),

propagation delay, physical or MAC message headers and

ACK responses. Moreover, the transmission queue of each

user consists of a single message. Thus, any inefficiency of

the scheme is a result either of the idle contention intervals or

collisions. The simulated average throughput of such scheme

is presented in Fig. 7. We note that CCSM significantly

outperforms even such idealised CSMA/CA scheme offering,

e.g., twice the throughput of idealised CSMA/CA in the case

of 20 users.

V. CONCLUSIONS

In this paper we have introduced a novel modulation and

multiplexing method for ad-hoc wireless networks. The CCSM

method offers a range of benefits: same time/frequency duplex,

minimal MAC, inherent robustness in time dispersive chan-

nels. The CCSM is also applicable to optical communications

(both guided and free space), where it could offer better per-

formance/flexibility than combinatorial PPM. We have demon-

strated significant data throughput improvements against the
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Figure 7. Throughput comparison of the CCSM and the idealised versions
of CSMA/CA and fully centralized TDMA with guard intervals.

state-of-the art. However, the presented performance gains

of CCSM are conservative, since we have opted for a low

complexity detection method. Further performance gains can

be achieved by employing sparse recovery methods which

would capitalise on the discrete nature of the unknown signal

vector.
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