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ABSTRACT

In this paper we considerBasis Pursuit De-Noising(BPDN)
problems in which the sparse original signal is drawn from
a finite alphabet. To solve this problem we propose an iter-
ative message passing algorithm, which capitalises not only
on the sparsity but by means of a prior distribution also on
the discrete nature of the original signal. In our numerical
experiments we test this algorithm in combination with a
Rademacher measurement matrix and a measurement matrix
derived from the random demodulator, which enables com-
pressive sampling of analogue signals. Our results show in
both cases significant performance gains over a linear pro-
gramming based approach to the considered BPDN problem.
We also compare the proposed algorithm to a similar mes-
sage passing based algorithm without prior knowledge and
observe an even larger performance improvement.

Index Terms— Compressive Sampling, Signal Recovery,
Finite Alphabet, Message Passing

1. INTRODUCTION

When the information bearing part of a signal lies only in a
small sub-space of the entire signal space, a uniform full rate
sampling approach, i.e., sampling at Nyquist rate, is ineffi-
cient. In [1] and [2], Donoho and Candèset al. addressed
this observation and introducedCompressive Sampling(CS).
The key contribution of these papers was to show how random
matrices andl1-minimization can be applied to achieve opti-
mal recovery of a sparse signal from a very limited number of
measurements.

While initial reconstruction algorithms were based on
convex optimisation and linear programming, recent ad-
vances in compressive sampling have led to the development
of various other algorithms which solve the reconstruction
task at a lower computational complexity. Inspired by the
success of message passing algorithms as used for the de-
coding operation of some channel codes, the authors of [3]
solve the reconstruction of the original signal by means of
belief propagation on a sparse graph. More recently, a simple
iterative soft thresholding reconstruction algorithm, called
Approximate Message Passing(AMP), has been proposed in

[4]. The basis of this algorithm is also belief propagation,
albeit on a fully connected graph, and it exhibits a virtually
equivalent sparsity-undersampling trade-off to that of linear
programming based reconstruction algorithms.

In this paper, we address the problem of reconstructing a
sparse finite alphabet signal from a limited number of noisy
measurements which are obtained by compressive sampling.
This problem appears in many areas such as spectrum sens-
ing, symbol detection in digital communications, and multi-
user detection, cf. [5, 6]. Many existing reconstruction algo-
rithms for compressive sampling exploit the knowledge of the
sparsity level of the original signal. Building upon the AMP
framework, we propose here a novel AMP-based algorithm
which capitalizes not only on the sparsity but also on a prior
distribution, which manifests the finite alphabet propertyof
the original signal.

In the derivation of this algorithm we assume that a
time discrete sparse signal is applied directly to a mea-
surement matrix whose entries are randomly sampled from
{

− 1√
R
,+ 1√

R

}

, whereR is the number of measurements. In

practice however, we are typically confronted with various
types of measurement matrices. To this end we consider here
as an application also the random demodulator [7], which
allows to sample time-continuous analogue signals at sub-
Nyquist rates and resorts to techniques from compressive
sampling to reconstruct the signal. In both cases our numeri-
cal experiments indicate that the proposed algorithm offers an
excellent performance in reconstructing sparse signals from
noisy undersampled observations. When we compare the
new algorithm with a standard linear programming based re-
construction algorithm and the AMP algorithm for the BPDN
problem from [8], we observe a significant performance im-
provement. Moreover, we note that the computational cost of
the algorithm proposed in this paper is comparable to existing
state of the art algorithms.

The remainder of the paper is organized as follows. In
Section 2 we outline the considered compressive sampling
problem. Next, we introduce our proposed approximate mes-
sage passing reconstruction algorithm with prior knowledge
in Section 3. In Section 4.1 we compare the proposed al-
gorithm at first with the linear programming based SPGL1



algorithm and the AMP algorithm for the BPDN problem in
combination with a Rademacher measurement matrix. Then
we briefly recap in Section 4.2 on the random demodulator
and also present results for this scenario. Finally, Section 5
concludes the paper.

2. PROBLEM OUTLINE

Let A = {a1, . . . , aS} denote a finite set ofS non-zero real
numbers and defineA0 := A ∪ {0}. TheW -dimensional
sparse column vectorb shall have onlyK ≪ W non-zero
entries, which are drawn uniformly at random fromA. More-
over, letΨ ∈ RR×W be a matrix, for whichR ≤ W holds.
Given the noisy observation

v = Ψb+ n, (1)

wheren = [n0, . . . , nr, . . . , nR−1]
T andnr is i.i.d. N

(

0, σ2
)

,
our aim is to recoverb. Problems of this type are frequently
considered in the CS literature. One way to reconstruct the
sparse vectorb is by solving the optimization problem

arg min
b̂∈AW

0

∥

∥

∥
b̂

∥

∥

∥

0
subject to

∥

∥

∥
Ψb̂− v

∥

∥

∥

2

2
≤ γ′, (2)

for an optimization constantγ′, which is chosen depending
on the noise variance. In general though thel0-minimization
used in (2) is NP-hard. This has led to various approximate al-
gorithms, including those based on convex relaxation, i.e., on
l1-minimization, like BPDN [9] or LASSO [10]. Many of the
approximate algorithms for CS can thus be applied directly to
approximate the solution of (2) by solving the relaxed prob-
lem

arg min
b̂∈RW

∥

∥

∥
b̂

∥

∥

∥

1
subject to

∥

∥

∥
Ψb̂− v

∥

∥

∥

2

2
≤ γ, (3)

and ensuring by, for example, thresholding thatb̂ ∈ AW
0

holds. However, in addition to the number of non-zero entries
in the sparseW -dimensional signalb, the knowledge that its
entries lie in the setA0 can also be utilized directly to im-
prove the recovery ofb, as will be discussed in the following
sections.

3. AMP WITH DISCRETE PRIOR DISTRIBUTION

It is well known that the solution of thel1-minimization in
(3) corresponds to a mode of the posterior distribution when
a double-exponential prior distribution is used. Donohoet
al. also use a double-exponential prior in the derivation of
their AMP algorithm [4], where the contribution of the prior
distribution in the message update rules of the belief propa-
gation algorithm can be interpreted as a ‘sparsity promoting’
soft thresholding operation. However, their results are quite
general and a similar approach can be applied when a differ-
ent choice of prior distribution is more suitable. Indeed, [8]

argues that an estimate of the input distribution can be used
to improve the recovery algorithm. Therefore, it is naturalto
employ a discrete prior distribution when the original signal
is drawn from a finite alphabet, and we take

f (bw) = π0 · δ {bw = 0}+
S
∑

s=1

πs · δ {bw = as} (4)

as prior for eachbw in b = [b0, ..., bw, ..., bW−1]
T, where

π0 = 1 − K
W

, andπs = K
WS

for 1 ≤ s ≤ S. Note that this
prior is constructed under the assumption that the non-zero
entries inb are drawn uniformly fromA. Should some non-
zero entries be more likely than others, the prior distribution
can be easily modified to reflect this additional information.

Consider a fully connected bipartite graph betweenR
measurement nodes on one side andW variable nodes on the
other side. The measurement nodes shall represent the entries
in v and likewise the variable nodes the unknown entries
in b. As in [4] we study belief propagation (BP) message
updates between the measurement and variable nodes on this
complete graph. We denote the set of theW variable nodes
as[W ] and usew, ω ∈ {0, 1, ...,W − 1} as indices for this
set. Similarly, we applyr, ρ ∈ {0, 1, ..., R− 1} as indices
for the set[R] of all R measurement nodes. At iterationt we
denote the message passed from the variable nodew to the
measurement noder by ν(t)w→r (bw) and the message passed
on this edge in the opposite direction byν̂(t)r→w (bw). In the
t-th iteration the BP message updates are then given as

ν̂(t)r→w (bw) ∝
ˆ

exp

[

− 1

2σ2
(vr − (Ψb)r)

2

]

·
∏

ω 6=w

ν(t−1)
ω→r (bω) db−w, (5)

ν(t)w→r (bw) ∝ f(bw)
∏

ρ6=r

ν̂(t)ρ→w (bw) , (6)

wheredb−w denotes that integration is over all variables ex-
ceptbw, andσ2 is the variance of the noise in the measure-
ments. Note that the messages from variable to measurement
nodes in (6) are proportional to the probability mass function
onA0. We initialize

ν(0)w→r (bw) = f(bw). (7)

We denote the mean and the variance of the message in (6) by
ξ
(t)
w→r andτ (t)w→r, respectively. Note thatξ(0)w→r andτ (0)w→r are

initialized to the prior mean and variance∀w ∈ [W ] , ∀r ∈
[R]. We will derive the algorithm here under the assumption

thatψr,w ∈
{

− 1√
R
,+ 1√

R

}

. Later in our simulations how-

ever we relax this assumption and work with a generalΨ with
normalized columns.

Consider the random vectorb−w= [b0, b1, . . . , bw−1,
bw+1, . . . , bW−1]

T distributed according to the product mea-
sure

∏

ω 6=w ν
(t)
ω→r (bω), and the associated scalar random
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Fig. 1: Detection error rateP
(

b̂w 6= bw

)

versus the noise varianceσ2 when

the measurement matrixΨ in (1) is a Rademacher matrix with unit column
norm, or the random demodulator matrix. The number of iterations for both
AMP algorithms is set toT = 50.

variable
x(t)r→w = vr −

∑

ω 6=w

ψr,ωbω. (8)

Denote the induced density ofx(t)r→w by g. By the central
limit theorem, for largeW , g can be approximated by a Gaus-
sian density with meanvr − ∑

ω 6=w ψr,ωξ
(t)
ω→r and variance

1
R

∑

ω 6=w τ
(t)
ω→r. Thereby, if we write (5) in its equivalent

form

ν̂(t)r→w (bw) ∝ E
x
(t)
r→w∼g

exp

[

− 1

2σ2
(x(t)r→w − ψr,wbw)

2

]

,

we see that the factor to variable message update (5) can be
approximated by a Gaussian integral. These observations lead
to the simplified algorithm for message passing with a dis-
crete prior distribution given in Algorithm 11. Note that we
track the posterior probabilities in the log-domain, as numeri-
cal simulations indicate that this results in a numericallymore
stable implementation of the simplified message-passing al-
gorithm.

4. NUMERICAL EXPERIMENTS

4.1. Rademacher Measurement Matrix

For the numerical experiments presented here we assume that
A0 = {−1, 0,+1} and fixW = 512, R = 205, K = 20.
The entries in the measurement matrixΨ shall be drawn uni-
formly at random from

{

−1/
√
R,+1/

√
R
}

, which makes

1Throughout the algorithm, “dot” is a placeholder for anyr ∈ [R] or for
ø, in which case the summation in Step (3) is over allρ ∈ [R].

Ψ a Rademacher matrix with unit column norm. To obtain the
estimatêb for the originalb from the noisy observationv we
apply the approximate message passing algorithm, as outlined
in Algorithm 1. For a comparison we also apply to the same
problem the algorithms for the BPDN problem from [11, 12],
named SPGL1-BPDN, and from [8], named AMP-BPDN.
Unlike the proposed AMP algorithm the SPGL1-BPDN and
the AMP-BPDN algorithm require the parameterγ as input,

which we choose asγ =
√

⌈W/R⌉ ·σ ·
√
R ·

√

1 +
√
2/
√
R.

In contrast to our proposed algorithm, which always returns
an estimate forb in {−1, 0 + 1}W , the SPGL1-BPDN and
the AMP-BPDN algorithm return estimates inRW . For
this reason one can threshold theb̂ obtained from these two
algorithms byα and take as the outputsign

(

b̂w

)

, where
∣

∣

∣
b̂w

∣

∣

∣
≥ α, and zero otherwise. Alternatively, one can search

for theK entries inb̂ with the largest magnitude and set them
depending on their sign to±1 and all other entries to zero.

In Figure 1 the detection error rate, i.e.,P
(

b̂w 6= bw

)

, is

plotted for AMP-BPDN, SPGL1-BPDN, and the algorithm
proposed in this paper versus the noise variance. Our sim-
ulations indicate that the detection error rate of the SPGL1-
BPDN and AMP-BPDN algorithm are strongly dependent
on the chosen thresholdα and that the decoding rule which
simply chooses theK largest entries of̂b achieves the best
performance for both of these algorithms (this version is plot-
ted in Figure 1). However, even in this case the detection
error probability performance of the SPGL1-BPDN and the
AMP-BPDN algorithm is approximately 6dB respectively
20dB worse than that of the proposed AMP algorithm with
discrete prior.

4.2. Random Demodulator

In this section we consider discrete multi-tone signals, which
occur, for example, in orthogonal frequency division multi-
plex systems, in combination with the random demodulator.
For this class, it is shown in [7] how the operation of the ran-
dom demodulator, which is depicted in Figure 2, on the ana-
logue signal can be described equivalently by a time-discrete
representation.

Let F ∈ CW×W be a discrete Fourier transform matrix
andb ∈ {−1, 0,+1}W aK-sparse vector. A time discrete
representation of the analogue multi-tone signal is then given

∫
dt

analogue

input

signal

sub-Nyquist sampling rate

compressed
discrete
signal

chipping sequence

Fig. 2: Structure of the random demodulator as discussed in [7]



byx = Fb. The multiplication operation of the signalx with
the chipping sequence and the integrate and dump operation
of the random demodulator are described by theW×W diag-

onal matrixD and byH ∈ {0, 1}R
′×W , respectively.H shall

haveW/R′ consecutive ones in ther-th row starting from col-
umnrW/R′+1, wherer = 0, . . . , R′−1. As proposed in [7]
we allowH to have fractional elements in some of its columns
when R does not divideW . To summarize, the sparse signal
b is observed by the random demodulator through the random
demodulator matrixΨ′ = HDF ∈ CR′×W . The sign of the
non-zero entries ofD on the main diagonal is chosen inde-
pendently at random. However, we choose the magnitude of
these entries here such that the columns ofΨ

′ have unit norm.
As in Section 4.1 we aim here to recoverb from the noisy

samplesv given in (1), where however the real valued mea-
surement matrix

Ψ =

[

Re {Ψ′}
Im {Ψ′}

]

(9)

depends now on the random demodulator matrixΨ
′. For our

numerical experiments with the measurement matrix given by
(9), we setW = 512,R = 204,R′ = 102, andK = 20. For

this scenario the detection error rate, i.e.,P
(

b̂w 6= bw

)

, is

also plotted in Figure 1 versus the noise variance. The per-
formance of all three algorithms is very similar to the case in
Section 4.1 with a Rademacher measurement matrix. The per-
formance gap between the SPGL1-BPDN, the AMP-BPDN,
and the proposed AMP algorithm with discrete prior is here
also approximately 6dB and 20dB wide.

5. CONCLUSIONS

In this paper we have developed a novel reconstruction algo-
rithm for compressive sampling problems, which applies the
prior knowledge that the entries of the original signal vec-
tor belong to a finite alphabet. Our simulation results show
for this algorithm significant performance gains over existing
reconstruction algorithms for the BPDN problem. In future
work we hope to further simplify the message passing update
equations of the proposed algorithm and thus further reduce
its complexity.
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1. Initialize: t = 1, and l(0)w→r(as) = πs, for w ∈ [W ], r ∈ [R],
s ∈ [S].

2. Calculate the mean and variance of the variable-to-factor messages:

ξ
(t)
w→· =

S
∑

s=0

as exp l
(t−1)
w→· (as)

τ
(t)
w→· =

S
∑

s=0

a2s exp l
(t−1)
w→· (as)−

(

ξ
(t)
w→·

)2

3. Approximate the mean and variance of
∏

ρ 6=· ν̂
(t)
ρ→w (bw):

µ
(t)
w→· =

∑

ρ 6=·

ψρ,w



vρ −
∑

ω 6=w

ψρ,ωξ
(t)
ω→ρ





η
(t)
w→· =

1

R

∑

ω 6=w

τ
(t)
ω→· + σ2

4. Incorporate prior and normalize:

l̄
(t)
w→· (as) = log πs −

(

µ
(t)
w→· − as

)2

2η
(t)
w→·

l
(t)
w→· (as) = − log

(

S
∑

s′=0

exp l̄
(t)
w→. (as′ )

)

+ l̄
(t)
w→. (as)

Sett← t+ 1, and repeat (2)-(4) until stopping criterion holds.

5. Returnb̂ =
[

b̂0, . . . , b̂W−1

]T
, where

b̂w = arg max
a∈A0

l
(t)
w→ø (a) .

[5] Hao Zhu and G.B. Giannakis, “Sparsity-embracing multiuser detection
for cdma systems with low activity factory,” inIEEE International
Symposium on Information Theory (ISIT), Jul. 2009, pp. 164 –168.

[6] Zhi Tian, G. Leus, and V. Lottici, “Detection of sparse signals un-
der finite-alphabet constraints,” inIEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2009, pp. 2349 –
2352.

[7] J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, and R.G. Baraniuk,
“Beyond Nyquist: Efficient sampling of sparse bandlimited signals,”
IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 520 –
544, Jan. 2010.

[8] D.L. Donoho, A. Maleki, and A. Montanari, “Message passing al-
gorithms for compressed sensing: I. motivation and construction,” in
IEEE Information Theory Workshop (ITW), Jan. 2010, pp. 1 –5.

[9] S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic decomposition by
basis pursuit,”SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[10] R. Tibshirani, “Regression shrinkage and selection via the lasso,”Jour-
nal of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. pp. 267–288, 1996.

[11] E. van den Berg and M. P. Friedlander, “SPGL1: A
solver for large-scale sparse reconstruction,” June 2007,
http://www.cs.ubc.ca/labs/scl/spgl1.

[12] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for
basis pursuit solutions,”SIAM Journal on Scientific Computing, vol.
31, no. 2, pp. 890–912, 2008.


