
GAUSSIAN DYNAMIC COMPRESSIVE SENSING

Wei Dai1, Dino Sejdinovic2, and Olgica Milenkovic1

1University of Illinois, Urbana-Champaign, ECE Department
2 University of Bristol, Department of Mathematics

Emails: {weidai07, milenkov}@uiuc.edu, d.sejdinovic@bristol.ac.uk

ABSTRACT

We consider the problem of estimating a discrete-time se-
quence of sparse signals with Gaussian innovations. Instances
of such problems arise in networking and imaging, in partic-
ular, dynamic and interventional MRI imaging. Our approach
combines Kalman filtering and compressive sensing (CS) tech-
niques by introducing a sparse MAP estimator for Gaussian
signals, and then developing a CS-type algorithm for solving
the sparse MAP problem. Despite the underlying assumption
that the sequence of sparse signals is Gaussian, our approach
also allows for efficient tracking of sparse non-Gaussian sig-
nals obtained via non-linear mappings, using only one sam-
ple/observation per time instance.

Keywords— Compressive sensing, Kalman filtering, sparse
Gaussian signals.

1. INTRODUCTION

In many applications, the signals to be processed can be well
approximated by sparse signals. Compressive sensing (CS) is a
novel framework for efficient sampling of sparse and approx-
imately sparse signals with provable performance guarantees
and polynomial time reconstruction complexity [5, 2].

We consider a special CS scenario where one is concerned
with reconstructing a discrete-time sequence of sparse Gaussian
signals with Gaussian innovations. Note that Kalman filtering
is the classic technique to handle Gaussian innovation signals.
While both CS and Kalman filtering techniques have been ex-
tensively and successfully applied to these problems, a coherent
combination of these two techniques in the context of dynamic
CS is currently unknown.

We propose a reconstruction paradigm for sparse Gaussian
signals using techniques from both Kalman filtering and CS.
First, we describe a sparse MAP estimator that is based on the
statistics of the signal. Second, we apply CS techniques for
solving this sparse MAP estimation problem. Our approach
allows for devising 1) computationally efficient algorithms to
track sparse Gaussian signals and 2) signal tracking using only
one, or a small (constant number) of samples per time instance.
Furthermore, our analysis presented in Section 2.4 reveals that
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1) the formulation of the standard CS problem represents a spe-
cial instance of the proposed sparse MAP estimator problem.
2) several algorithms for standard CS can be viewed as special
instances of algorithms for sparse Gaussian signal reconstruc-
tion [3]. The Gaussian Kalman filtering/CS method shows re-
markable simulation performance for the case that the sparse
signals to be tracked are non-Gaussian, and hence can be ap-
plied to a much wider class of sparse signals.

The proposed methods differ significantly from other tech-
niques described in the literature regarding dynamically chang-
ing sparse signals. In [6], the authors propose a class of locally
competitive algorithms for reconstruction of time varying sparse
signals with the goal of simplifying practical implementations
of greedy CS algorithms. In [1], the authors propose to develop
warm-start algorithms for time varying signals. More recently,
the authors in [7, 8] described an approach for causal and re-
cursive reconstruction of a time sequence of sparse signals with
slowly changing sparsity patterns. There, one needs to solve a
standard CS reconstruction problem at each time instance, and
therefore the number of measurements per time instance needs
to be sufficiently large to admit sampling RIP conditions. In
contrast, the sparse MAP estimator assumes a Gaussian signal
statistics and provides reasonably good performance even when
only one sample is used per time instance.

2. RECONSTRUCTION OF SPARSE GAUSSIAN
SIGNALS

2.1. Problem Formulation

In standard Kalman filtering, one considers a linear dynamic
system described by two sets of update matrices, Φt, Ψt and
update equations

xt = Ψtxt−1 + ut,

yt = Φtxt + vt.

Here, xt ∈ Rn represents the state vector of the system, yt ∈
Rm denotes the measurement vector, ut ∈ Rn and vt ∈ Rm

are Gaussian innovation vectors with ut ∼ N (0,Σu) and vt ∼
N (0,Σv), respectively. The subscript t = 1, 2, · · · describes
the time instances at which the signal is observed. Suppose
that the statistics of xt−1 are known, and given by xt−1 ∼
N (x̂t−1,Σt−1). Given yt, Ψt and Φt, the Kalman filter esti-
mates xt, denoted by x̂t, such that the mean square error (MSE)



E
[
‖xt − x̂t‖22

]
is minimized. It also holds that the estimate x̂t

represents the maximum a posteriori probability (MAP) esti-
mate, i.e.,

x̂t = arg max
x

pXt|Yt,Xt−1 (x|yt, x̂t−1) , (1)

In general, the estimate x̂t does not have a sparse structure.
Now suppose that one has prior information that xt is K-

sparse. The MAP estimator that takes the sparsity assumption
into consideration is given by

x̂t = arg max
x: ‖x‖0≤K

pXt|Yt,Xt−1 (x|yt, x̂t−1) , (2)

where the pseudo-norm ‖·‖0 counts the number of non-zero en-
tries of its argument. It is clear that

pXt|Yt,Xt−1 (x|x̂t−1, yt) ∝ pXt|Xt−1 (x|x̂t−1) pYt|Xt
(yt|xt) ,

pXt|Xt−1 (x|x̂t−1) = pUt
(x−Ψtx̂t−1) and pYt|Xt

(yt|x) =
pVt

(yt −Φtx), where pUt
and pVt

denote the probability den-
sity functions (PDF) of Ut and Vt, respectively. The sparse
MAP estimator in (2) can be written as

x̂t = arg min
‖x‖0≤K

−log pUt (x−Ψtx̂t−1)−log pVt (yt −Φtx) .

(3)
Since ut and vt are Gaussian distributed, there exist explicit
expressions for pUt (x−Ψtx̂t−1) and pVt (yt −Φtx). Here
and henceforth, assume that both covariance matrices Σu and
Σv have full rank, i.e., that both Σ−1

u and Σ−1
v exist. Let At =

2
(
Σ−1

u + ΦT
t Σ−1

v Φt

)
, bt = −2

(
Σ−1

u Ψtx̂t−1 + ΦT
t Σ−1

v yt

)
,

and
ft (x) =

1
2
xT Atx + bT

t x. (4)

It can be verified that the sparse MAP estimator in (3) is equiv-
alent to

x̂t = arg min
x: ‖x‖0≤K

ft (x) . (5)

This is the optimization problem that one needs to solve for each
time instance t.

Note that it is NP-hard to solve the optimization problem
(5). We therefore propose two practical methods for solving
this optimization problem approximately in subsections 2.2 and
2.3. Due to space limitations, the corresponding performance
analysis is postponed to the companion paper [4].

2.2. Convex Relaxation

One way to solve (5) is via convex relaxation. More precisely,
one can solve an unconstrained optimization problem given by

x̂t = arg min
x

ft (x) + µ ‖x‖1 , (6)

where ‖x‖1 =
∑ |xi| denotes the `1-norm. We refer to this

method as `1-MAP method. One issue related to the implemen-
tation of this method is how to choose µ, since the resulting
estimate x̂t strongly depends on the parameter µ. One practi-
cal solution to this issue involves offline training but may not be
suitable for online computing.

2.3. Greedy Algorithms

Another way to solve (5) is to perform a greedy search for a
K-sparse signal. There are several greedy algorithms devel-
oped for standard CS reconstruction, including OMP, CoSaMP
and SP. While these greedy algorithms exhibit low complexity
and provable performance guarantees, they cannot be directly
applied to reconstruction of dynamically changing sparse Gaus-
sian signals as they do not take temporal correlation of signals
into consideration. Motivated by the SP algorithm for greedy
CS reconstruction [3], we propose an SP algorithm for sparse
MAP estimation (SP-MAP). The steps of this algorithm are de-
scribed in Algorithm 1.

Algorithm 1 The SP-MAP Algorithm
Let `max be the maximum iterations at each time instance. Let
x̂0 = 0. At time instance t, perform the following operations.
Initialization:

1. Define x′t = Ψtx̂t−1, A = 2
(
Σ−1

u + ΦT
t Σ−1

v Φt

)
and

b = −2
(
Σ−1

u x′t + ΦT
t Σ−1

v yt

)
.

2. Let ` = 0. Let x̂t = −A−1b. Let K be the set of the K
indices corresponding to the largest Ai,i |x̂t,i|2’s, i ∈ [n].
Define x̂

(`)
t such that x̂

(`)
t,Kc = 0 and x̂

(`)
t,K = −A−1

K,KbK.

3. Let x̂t = x̂
(`)
t . Compute f (`) = 1

2 x̂T
t Ax̂t + bT x̂t.

Iterations:

1. Let ` = ` + 1. For every i /∈ K, compute ∆i =
(〈x̂t,K,AK,i〉+ bi)

2
/Ai,i. Let K∆ be the set of the K

indices corresponding to the largest ∆i’s, i ∈ Kc.

2. Let K̃ = K⋃K∆. Define x̃t such that x̃t,K̃c = 0 and
x̃t,K̃ = −A−1

K̃,K̃bK̃. For every i ∈ K̃, compute ∆i =
Ai,ix̃

2
t,i.

3. Let K be the set of the K indices corresponding to the
largest ∆i’s, i ∈ K̃. Define x̂

(`)
t such that x̂

(`)
t,Kc = 0 and

x̂
(`)
t,K = −A−1

K,KbK. Compute f (`) = 1
2 x̂T

t Ax̂t + bT x̂t.

4. If f (`) > f (`−1), quit the iterations.

5. Let x̂t = x̂
(`)
t . If ` ≥ `max, quit the iterations. Other-

wise, go to Step 1 for the next iteration.

2.4. Connections to Standard CS Techniques

In standard CS, the nonzero components of the sparse signal
are arbitrary. Indeed, this model can be viewed as a special
case of the sparse Gaussian signal model. Consider the sparse
Gaussian signal model where Σu = σ2

uI , Σ2
v = σ2

vI , and
σ2

u → ∞. For any given x̂t−1 ∈ Rn and Ψt ∈ Rn×n, the
probabilities pUt (x1 −Ψtx̂t−1) and pUt (x2 −Ψtx̂t−1) are
asymptotically identical for any given x1 6= x2 ∈ Rn. As a



result, one can drop the term log pUt
(x−Ψtx̂t−1) in (3) and

the sparse MAP estimator (3) becomes

x̂t = arg min
x: ‖x‖0≤K

‖yt −Φtx‖22 ,

which is the optimization problem arising in standard CS.
The `1-norm regularization and the SP methods for standard

CS may also be seen as special instances of the proposed `1-
MAP and SP-MAP methods, respectively. Suppose that Σu =
σ2

uI , Σv = I and σ2
u → ∞. It is straightforward to verify that

the optimization problem in (6) becomes

x̂t = arg min
x

‖yt −Φtx‖22 + µ ‖x‖1 .

The connections between standard SP algorithm and the pro-
posed SP-MAP algorithm will be elucidated in our companion
paper [4].

Despite this apparent similarity between the sparse MAP ap-
proach and standard CS, the fundamental difference between
the approaches amount to the sparse Gaussian signal model. In
standard CS, when the number of measurements is very small,
the solution of the corresponding convex relaxation may not be
unique, that is, the intersection of the corresponding `1-ball and
the null space of the measurement matrix may contain multiple
points. In our approach, Gaussian statistics play an important
role in the reconstruction process. When Σu has full rank, the
Hessian matrix of ft (x) in (4) is positive-definite. As a re-
sult, the solution of the corresponding convex relaxation (6) is
always unique.

This distinguishes our approach from the approach taken in
[7, 8]. There, one needs to solve a standard CS problem (some-
times the sparse support set is restricted) at each time instance.
A consequence is that sufficiently many measurements have to
be taken in each time instance in order to avoid multiple plau-
sible solutions. In contrast, there is no such issue in our ap-
proach: in principle, one may take one measurement at each
time instance.

3. SIMULATIONS

We performed extensive numerical simulations to test our ap-
proach on both Gaussian and non-Gaussian, K-sparse dynam-
ical signals. Due to space limitations, we present what we be-
lieve to be the most interesting findings. These findings pertain
to sparse signals obtained via non-linear mappings of Gaussian
signals, as described below. Note that uncented Kalman filter-
ing and related Monte Carlo sampling methods usually applied
in this case failed to produce results comparable to our approx-
imate Gaussian CS method.

In our numerical tests, we need a dynamic system where the
signal innovation ut is Gaussian and the signal xt at each time
instance is forced to be sparse. In order to generate such a sparse
Gaussian dynamic signal, we use the model

xt = Tk (Φtxt−1 + ut) , (7)

where ut was defined in Section 2, while the nonlinear map-
ping TK has domain Rn and range Rn, and when applied to the
vector x, TK (x) produces a vector that agrees with x in the
K largest magnitude entries, and has all other coordinates equal
to zero. Note that the resulting signal is non-Gaussian, since it
contains the K largest order statistics of non-Gaussian signals
and have prohibitively large computational complexity.

To evaluate the performance of our proposed approach, we
introduce two benchmark algorithms. The first one is the genie-
aided sparse Gaussian signal reconstruction described in Algo-
rithm 2. In this setup, the support set of the sparse signal xt

at each time instance is given as side information. Hence, one
only needs to solve an MMSE estimation problem to recover the
signal components in the support set. The performance of this
algorithm is the best performance that one can hope to achieve
without additional side information regarding the problem.

Algorithm 2 The Genie-Aided Algorithm
Let x̂0 = 0.
At time instance t, suppose that the support set K =
{i ∈ [n] : xt,i 6= 0} is given. Let

x̂t,K = (Ψtx̂t−1)K + Et,K
(
yt − (Φt):,K (Ψtx̂t−1)K

)
,

and x̂t,Kc = 0, where

Et,K = (Σu)K,K (Φt)
T
:,K

(
(Φt):,K (Σu)K,K (Φt)

T
:,K + Σv

)−1

.

The other benchmark algorithm is a one-step Kalman fil-
ter summarized in Algorithm 3. As opposed to the traditional
Kalman filter, one does not track the covariance matrix of xt:
due to the nonlinear operator TK , the statistics of the dynamic
signal cannot be represented in a closed form. Note that this
algorithm ignores the sparsity assumption.

Algorithm 3 The Standard One-Step Kalman Filter
Let x̂0 = 0.
At time instance t, compute x̂t =
Ψtx̂t−1 + Et (yt −ΦtΨtx̂t−1) , where Et =
ΣuΦT

t

(
ΦtΣuΦT

t + Σv

)−1.

As a variation of the standard one-step Kalman filter, we also
test a heuristic algorithm described in Algorithm 4. Both Algo-
rithms 3 and 4 are based on standard Kalman filtering, but the
latter takes the K-sparse side information into consideration.

Algorithm 4 A Sparsity-Aware Kalman Filter
Let x̂0 = 0.
At time instance t, compute x̃t =
Ψtx̂t−1 + Et (yt −ΦtΨtx̂t−1), where Et =
ΣuΦT

t

(
ΦtΣuΦT

t + Σv

)−1. Then set x̂t = TK (x̃t).

In our simulations we used n = 256 and K = 32. We set
Ψ = In, Σu = σ2

uIn and Σv = σ2
vIm, where σu = σv = 0.01.
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Fig. 1: Distortion versus sample size trade-off.
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Fig. 2: Comparison of reconstruction algorithms.

For each algorithm, we ran five realizations. For each realiza-
tion, we used an observation time t of the dynamic system rang-
ing from 1 to 2e5. In each realization, the initial state of the
dynamic system was chosen randomly, i.e., the support set K of
x0 was randomly generated from the uniform distribution on all
subsets of [n] with cardinality K, x0,Kc = 0, while the values
of x0,K were randomly generated from the Gaussian distribu-
tion N (0, IK). Note that we deliberately used x̂0 = 0, which
represents a poor guess for x0, in order to understand how fast
an algorithm can lock onto an actual dynamic sparse signal. In
all our simulations, we use the relative reconstruction distortion,
defined as ‖x̂t − xt‖22 / ‖xt‖22, as the performance measure.

Due to space limitations, we present only two sets of sim-
ulation results about the SP-MAP algorithm. Since the perfor-
mance of the `1-MAP method depends on the choice of the pa-
rameter µ, the corresponding numerical tests are omitted here.
See the companion paper [4] for more details.

The first results, shown in Figure 1, demonstrate the trade-
offs between the number of samples taken at each time instance
and the reconstruction distortion. Notice that as the time index
increases, taking even one sample per time allows for fairly ac-
curate signal tracking. In this case, the measurements matrix
clearly does not satisfy RIP-type conditions, since it consists of
a single row.

The second set of results is shown in Figure 2. The figure
compares the proposed SP-MAP algorithm and Algorithms 2, 3
and 4. For fair comparison, we accounted only for the relative
distortion of these algorithms after they lock onto the dynamical
sparse signal: in particular, we average the relative distortions
at time instances from 1e5+1 to 2e5. According to the simula-
tion results, the SP-MAP algorithm outperforms the algorithms
based on standard Kalman approach. Furthermore, as the num-
ber of samples per time instance increases (yet remains a small
constant), the SP-MAP algorithm performs close to the genie-
aided approach.

At the first glance, the SP-MAP algorithm may require many
iterations per time instance and therefore its computational
complexity may be an issue. To address this concern, we nu-
merically tested a simplified SP-MAP algorithm that executes
only the initial steps of the SP-MAP algorithm and does not
loop through any of the iterations. Simulation results in Figure
2 show that the performance loss introduced by this modifi-
cation is negligible. Hence, when computational resources are
restricted, one may skip the iterations in the SP-MAP algorithm.
Furthermore, a quick check of the simulations of the SP-MAP
algorithm reveals that only one or two iterations are needed for
most time instances.
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