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Consider a linear dynamic system described by the update
equations xt = Ψtxt−1 + ut, yt = Φtxt + vt. Here,
xt ∈ Rn represents the state vector of the system, yt ∈ Rm

denotes the measurement vector, ut ∈ Rn and vt ∈ Rm

are Gaussian innovation vectors with ut ∼ N (0,Σu) and
vt ∼ N (0,Σv), respectively. The subscript t = 1, 2, · · ·
describes the time instances at which the signal is observed.
Suppose that the statistics of xt−1 are known, and given
by xt−1 ∼ N (x̂t−1,Σt−1). Given yt, Ψt and Φt, the
MAP estimate of xt, denoted by x̂t, coincides with the
corresponding MMSE estimate.

Now suppose that one has prior information that xt is K-
sparse. The MAP estimator that takes the sparsity assumption
into consideration is given by

x̂t = arg max
x: ‖x‖0≤K

pXt|Yt,Xt−1
(x|yt, x̂t−1) ,

where the pseudo-norm ‖·‖0 counts the number of non-zero
entries of its argument. Let At = 2

(
Σ−1

u + ΦT
t Σ−1

v Φt

)
, bt =

−2
(
Σ−1

u Ψtx̂t−1 + ΦT
t Σ−1

v yt

)
, and ft (x) = 1

2x
TAtx +

bTt x. It can be verified that the sparse MAP estimator is
equivalent to

x̂t = arg min
x: ‖x‖0≤K

ft (x) . (1)

At the first glance, the Gaussian sparse modelling looks ar-
bitrary. The common strategy for dynamic CS usually involves
certain sparsity-promoting distributions, which often result in
reconstructions with high computational complexity and week
performance guarantees. Note that Gaussian modelling has
been successfully applied to dynamic signal processing, and
that in many applications, e.g. MRI imaging, the dynamic
signal at each time instance is sparse. Our model combines
the advantages of both Gaussian and sparse modelling and
renders good performance guarantees.

It is NP-hard to solve the optimization problem (1). We
therefore propose a practical greedy algorithm to solve (1). It is
based on the well-known subspace pursuit (SP) algorithm for
standard compressive sensing, and therefore termed SP-MAP.
The details are described in Algorithm 1. It can be proved
that the proposed SP-MAP algorithm coincides the standard
SP algorithm when Σu = σ2

uI , Σv = I and σ2
u → ∞. The

performance guarantees of the proposed SP-MAP algorithm
are based on RIP like conditions and will be detailed in the
full version of this abstract.

We performed extensive numerical simulations to test our
approach for K-sparse dynamical signals. In order to generate
a sparse Gaussian dynamic signal, we use the model xt =
Tk (Φtxt−1 + ut) , where the nonlinear mapping TK (x) pro-
duces a vector that agrees with x in the K largest mag-
nitude entries, and has all other coordinates equal to zero.

Algorithm 1 The SP-MAP Algorithm
Let `max be the maximum iterations at each time instance. Let
x̂0 = 0. At time instance t, perform the following operations.
Initialization:

1) Define x′t = Ψtx̂t−1, A = 2
(
Σ−1

u + ΦT
t Σ−1

v Φt

)
and

b = −2
(
Σ−1

u x′t + ΦT
t Σ−1

v yt

)
.

2) Let ` = 0. Let x̂t = −A−1b. Let K be the set of
the K indices corresponding to the largest Ai,i |x̂t,i|2’s,
i ∈ [n]. Define x̂

(`)
t such that x̂

(`)
t,Kc = 0 and x̂

(`)
t,K =

−A−1
K,KbK.

3) Let x̂t = x̂
(`)
t . Compute f (`) = 1

2 x̂
T
t Ax̂t + bT x̂t.

Iterations:
1) Let ` = `+ 1.
2) For every i /∈ K, compute ∆i =

(〈x̂t,K,AK,i〉+ bi)
2
/Ai,i. Let K∆ be the set of

the K indices corresponding to the largest ∆i’s, i ∈ Kc.
3) Let K̃ = K

⋃
K∆. Define x̃t such that x̃t,K̃c = 0 and

x̃t,K̃ = −A−1

K̃,K̃bK̃. For every i ∈ K̃, compute ∆i =

Ai,ix̃
2
t,i.

4) Let K be the set of the K indices corresponding to the
largest ∆i’s, i ∈ K̃. Define x̂

(`)
t such that x̂(`)

t,Kc = 0 and
x̂

(`)
t,K = −A−1

K,KbK. Compute f (`) = 1
2 x̂

T
t Ax̂t + bT x̂t.

5) If f (`) > f (`−1), quit the iterations.
6) Let x̂t = x̂

(`)
t . If ` ≥ `max, quit the iterations.

Otherwise, go to Step 1 for the next iteration.
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Figure 1. Comparison of reconstruction algorithms.

Figure 1 compares the proposed SP-MAP algorithm with
other algorithms designed for dynamic CS. According to the
simulation results, the SP-MAP algorithm outperforms others
and it performs very close to the genie-aided approach when
the number of samples per time instance is sufficient.
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