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Decentralised Distributed Fountain Coding:
Asymptotic Analysis and Design

Dino Sejdinovic, Robert Piechocki, Angela Doufexi, and Mohamed Ismail

Abstract—A class of generic decentralised distributed fountain
coding schemes is introduced and the tools of analysis of the
performance of such schemes are presented. It is demonstrated
that the developed approach can be used to formulate a robust
code design methodology in a number of instances. We show that
two non-standard applications of fountain codes, fountain codes
for distributed source coding and fountain codes for unequal
error protection lie within this decentralised distributed fountain
coding framework.

Index Terms—Rateless codes, asymptotic analysis, decen-
tralised code design

I. INTRODUCTION

WE assume that the reader is acquainted with standard
fountain code design and analysis, cf. [1], [2], [3] for

the overview of fountain codes.
The aim of a decentralised distributed fountain coding

(DDFC) scheme is to reliably recover the data possibly
distributed across a set of nodes in a network, called source
nodes, at another set of nodes, called collector nodes, with
minimal number of transmissions. In our setting, we assume
that each collector node seeks to recover a data sequence
x = (𝑥1, 𝑥2, . . . , 𝑥𝑘), consisting of 𝑘 data packets 𝑥𝑖 ∈ 𝔽

𝑏
2,

𝑖 = 1, 𝑘, which are vectors of length 𝑏 over 𝔽2, and that
each source node in a network has access to a subset of data
sequence x. Furthermore, each source node is oblivious of
which data packets are available at other source nodes and
the sets of packets available at different source nodes are not
necessarily disjoint. Each source node uses a fountain code,
i.e., LT or Raptor code, to produce encoding packets over its
subset of data packets and multicasts these encoding packets
to collector nodes. The challenge in designing an efficient
and robust DDFC scheme lies within the fact that source
nodes do not cooperate and thus are not able to produce
a resulting bitstream resembling that of a good fountain
code. Rather, they produce localised encoding packets, linear
projections restricted to their respective subsets of coordinates
in data sequence x. However, we will show that by using
an appropriate generalised version of standard techniques for
analysis of sparse graph codes and fountain codes, we can
formalise a robust code design methodology for a number
of important instances of the DDFC framework. It is an
interesting insight that for some typical single source multicast
fountain coding problems such as fountain codes for unequal
error protection (UEP), it may still be useful to study these
problems as instances of DDFC, where a single source node
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produces various classes of localised encoding packets in order
to attain the UEP property.

II. PROBLEM OVERVIEW

Let 𝑘, 𝑏 ∈ ℕ, 𝜀 > 0, and 𝑛 = ⌈𝑘(1 + 𝜀)⌉. Let x =
(𝑥1, 𝑥2, . . . , 𝑥𝑘) be a data sequence of 𝑘 data packets 𝑥𝑖 ∈ 𝔽

𝑏
2,

𝑖 ∈ 𝑁𝑘 that needs to be communicated to the collector
nodes.1 Assume that a collector node obtains a sequence
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛) of 𝑛 encoding packets produced in a
decentralised fashion at a number of source nodes, i.e., the
code overhead available to the collector node is 𝜀. We will
describe the decentralised generation of the encoding packets
by a weighted complete bipartite graph 𝒢 = (𝒜,ℬ,Θ), illus-
trated in Fig. 1a. In 𝒢, nodes 𝒜 = {𝐴1, 𝐴2, . . . 𝐴𝑟} represent
a disjoint partition of 𝑁𝑘, such that ∀𝑖 ∈ 𝑁𝑟, ∣𝐴𝑖∣ = 𝜋𝑖𝑘, for
some 𝜋𝑖 ∈ [0, 1], and nodes ℬ = {𝐵1, 𝐵2, . . . 𝐵𝑠} represent a
disjoint partition of 𝑁𝑛, such that ∀𝑗 ∈ 𝑁𝑠, ∣𝑌𝑗 ∣ = 𝛾𝑗𝑛, for
some 𝛾𝑗 ∈ [0, 1], and Θ = (𝜃𝑗𝑖 ) is an 𝑘×𝑛 matrix, such that 𝜃𝑗𝑖
is the weight associated with the edge 𝐴𝑖𝐵𝑗 . The weights are
normalized such that ∀𝑗 ∈ 𝑁𝑠,

∑
𝑖∈𝑁𝑟

𝜃𝑗𝑖 = 1. Note that also∑
𝑖∈𝑁𝑟

𝜋𝑖 = 1,
∑

𝑗∈𝑁𝑠
𝛾𝑗 = 1, by construction. We can think

of 𝐴𝑖, 𝑖 ∈ 𝑁𝑟, and 𝐵𝑗 , 𝑗 ∈ 𝑁𝑠 as determining the divison of
raw data packets and encoding data packets, respectively, into
classes: sequence 𝑥𝐴𝑖 is the 𝑖-th class of raw data packets and
sequence 𝑦𝐵𝑗 is the 𝑗-th class of encoding packets. Each of
the 𝑠 source nodes has direct access to a certain portion of
vector x, and the set of coordinates available to source node
𝑗 ∈ 𝑁𝑠 is 𝑥𝐶𝑗 , where 𝐶𝑗 = ∪𝜃𝑗

𝑖 ∕=0𝐴𝑖. Graph 𝒢 is a key part
of our system model, as it characterises: (1) availability of
data at source nodes: node 𝑗 has access to sequence 𝑥𝐴𝑖 if
𝜃𝑗𝑖 ∕= 0 (2) rate of production of encoding symbols at each
of the source nodes: sequence 𝑦𝐵𝑗 was produced at node 𝑗,
and (3) bias introduced towards certain portions of data in
formation of encoding packets: during the generation of each
encoding packet, packets from sequence 𝑥𝐴𝑖 are used with
probability 𝜃𝑗𝑖 at node 𝑗. Similar code construction involving
bias for the case of a single source node is used in UEP
fountain codes [5], which we refer to as weighted LT coding.
In addition to graph 𝒢, overall encoding process is described
by a set of degree distributions {Ω𝑗(𝑥)}𝑠𝑗=1, where distribution
Ω𝑗(𝑥) is used for LT encoding at user node 𝑗. Thus, with
𝒢 and {Ω𝑗(𝑥)}𝑠𝑗=1, we have fully described an instance of
data collection via independent decentralised distributed LT
encodings, i.e., a particular code ensemble which we denote by
DDLT(𝒢, {Ω𝑗(𝑥)}𝑠𝑗=1, 𝑘). We are interested in the decoding
performance of this ensemble as 𝑘 → ∞.

Example 1 (Uniform LT encodings): Source node 𝑗 ∈ 𝑁𝑠

chooses uniformly from all the available data packets: values
of 𝜃𝑗𝑖 are proportional to the sizes of 𝐴𝑖, whenever 𝜃𝑗𝑖 ∕= 0,

1Throughout the paper, we adopt the following notation. For any natural
number 𝑚, denote by 𝑁𝑚 the set {1, 2, . . . , 𝑚}. For data sequence x =
(𝑥1, 𝑥2, . . . , 𝑥𝑘) and 𝐴 ⊆ 𝑁𝑘 , we denote 𝑥𝐴 := (𝑥𝑖 : 𝑖 ∈ 𝐴).
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Fig. 1. (a) Generic DDFC scheme, (b) Symmetric DSC problem in Example 2 as an instance of DDFC, (c) Weighted UEP LT codes [5] for two classes

of importance as an instance of DDFC, (d) EWF codes [6] for two classes of importance as an instance of DDFC.

i.e., 𝜃𝑗𝑖 =
𝜋𝑖∑

𝑙∈𝐶𝑗
𝜋𝑙

. This means that the user 𝑗 is performing

a simple LT encoding over vector 𝑥𝐶𝑗 .

III. GENERALISED AND-OR LEMMA

Assume that each user is producing encoding packets as
described and once a collector node successfully receives a
sufficient amount of these encoding packets, it attempts to
recover x. We can capture the asymptotic performance of the
belief propagation decoder at the collector node as a function
of the code overhead 𝜀 by the generalisation of the original
And-Or tree analysis [4]. As in the standard And-Or tree
analysis and other density evolution arguments, we derive
the asymptotic performance of the decoder by looking at the
structure, and specifically at the degree distributions, on the
decoding factor graph. The proof of the lemma is omitted as
it is a straightforward generalisation of the standard And-Or
lemma. What distinguishes this generalised setting from the
original one is that the nodes in the decoding factor graph
are divided into classes, each of the classes of nodes possibly
having a different degree distribution. Classes are introduced
naturally - class 𝑖 of the input nodes corresponds to the raw
data packets 𝑥𝐴𝑖 and class 𝑗 of the output nodes corresponds
to the encoding packets 𝑦𝐵𝑗 .

Lemma 1 (Generalised And-Or lemma): For all 𝑖 ∈ 𝑁𝑟,
the packet error rate within sequence 𝑥𝐴𝑖 of a belief prop-
agation decoder for an ensemble DDLT(𝒢, {Ω𝑗(𝑥)}𝑠𝑗=1, 𝑘) at
a collector node, as 𝑘 → ∞, is equal to 𝑦𝑖 = lim𝑙→∞ 𝑦𝑖,𝑙,
where 𝑦𝑖,𝑙 is given by:

𝑦𝑖,0 = 1, (1)

𝑦𝑖,𝑙+1 = exp
[
−(1 + 𝜀)

𝑠∑
𝑗=1

𝜃𝑗𝑖
𝛾𝑗
𝜋𝑖
Ω′

𝑗(1−
𝑟∑

𝑚=1

𝜃𝑗𝑚𝑦𝑚,𝑙)
]
.

In some special cases of DDFC, derived asymptotic anal-
ysis allows us to formulate a robust linear programming
optimisation routine to calculate asymptotically good degree
distributions, similarly to, e.g., [3], and the remainder of this
paper illustrates two simple examples of such use of the
generalised And-Or lemma.

IV. SYMMETRIC DISTRIBUTED SOURCE CODING (DSC):
TWO NODES WITH COMMON DATA

Example 2: Assume that two source nodes 𝑆1 and 𝑆2

contain more than a half of all the packets in the data sequence
x = (𝑥1, 𝑥2, . . . , 𝑥𝑘) (but the number of packets at 𝑆1 and 𝑆2

is the same). A certain portion 𝑝 < 1/2 of the packets is

common to 𝑆1 and 𝑆2 but they have no knowledge of which
packets are available at the other source node. A collector
node would ideally need just slightly more than 𝑘 encoding
packets to recover the entire information sequence.

This Example outlines a simple DDFC problem, and its
graphical representation is given in Fig. 1b. Note that there are
three different classes of packets: class 𝐴1 of 1−𝑝

2 𝑘 packets
available only at node 𝑆1, class 𝐴2 of 𝑝𝑘 packets available
at both nodes, and class 𝐴3 of 1−𝑝

2 𝑘 packets available only
at node 𝑆2. Let each source node produce encoding packets
with an LT code with degree distribution Ω(𝑥) over (1−𝑝

2 +𝑝)𝑘
packets available at that node and let us assume collector node
obtains an equal number of encoding packets from each source
node. The recursive equation describing the asymptotic packet
error rate in class 𝐴1 is thus given by:

𝑦1,𝑙+1 = exp
[
−1 + 𝜀

1 + 𝑝
Ω′(
(1 − 𝑝)(1− 𝑦1,𝑙) + 2𝑝(1− 𝑦2,𝑙)

1 + 𝑝
)
]
.

(2)
It is easily checked that 𝑦3,𝑙 = 𝑦1,𝑙 and that 𝑦2,𝑙 = 𝑦21,𝑙,

∀𝑙 ≥ 0. Thus, one can trace the asymptotic behaviour of all
three packet error rates with a single parameter, which allows
simple transformation of the above recursive equations into
the linear program optimisation procedure.

Now, let us for the sake of simplicity assume 𝑝 = 1/3,
i.e., a third of all the packets are available at both source
nodes. Simple transformations yield the following generic
linear program2:

LP : min

𝑑max∑
𝑑

𝜔𝑑

𝑑
(3)

3

4
𝜔(1− 𝑧𝑖

2
− 𝑧2𝑖
2
) ≥ − ln(𝑧𝑖), 𝑖 ∈ 𝑁𝑚,

where 1 = 𝑧1 > 𝑧2 > ⋅ ⋅ ⋅ > 𝑧𝑚 = 𝛿 are 𝑚 equidistant
points on [𝛿, 1]. The solution of this linear program is an edge
perspective degree distribution with maximum degree 𝑑max

which reaches the packet error rate of 𝛿 within classes 𝐴1

and 𝐴3 (and 𝛿2 within class 𝐴2) at the minimum overhead.
The degree distribution we obtained using this linear program
with 𝛿 = 0.01 and 𝑑𝑚𝑎𝑥 = 100 successfully takes advantage
of the fact that two sources contain correlated information, and
it is given by: Ω∗(𝑥) = 0.0020𝑥 + 0.4305𝑥2 + 0.2205𝑥3 +
0.0793𝑥5+0.1097𝑥6+0.0508𝑥12+0.0409𝑥13+0.0343𝑥30+

2In linear programs given in the paper, variables (to be optimised) are
non-negative, i.e., 𝜔𝑑 ≥ 0, 𝑑 ∈ 𝑁𝑑max ; 𝜔(𝑥) = Ω′(𝑥)/Ω′(1) is the edge
perspective output degree distribution.
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Fig. 2. Symmetric DSC with LT codes.

0.0106𝑥32 + 0.0215𝑥100. Simulation results for large block-
lengths, 𝑘 = 6 ⋅ 104 and 𝑘 = 1.5 ⋅ 105 are consistent
with our asymptotic analysis, as demonstrated in Fig. 2. For
comparison, we included results for a typical Soliton-like
degree distribution3 Ω𝑟𝑎𝑝𝑡𝑜𝑟(𝑥) proposed for Raptor codes [3],
which is clearly penalised by higher error floors in this setting.

V. FOUNTAIN CODES FOR UNEQUAL ERROR PROTECTION

Whereas LT and Raptor codes typically provide equal error
protection for all source data, there are cases where certain
data parts are considered to be more important and require
higher error protection, e.g., transmission of video compressed
with a layered coder, and unequal error protection (UEP)
fountain coding schemes have recently been proposed [5], [6].
Asymptotic analysis of these codes are special cases of Lemma
1. Although these codes can be fully centralised, it is useful to
think of them as of instances of DDFC, as this allows rigorous
asymptotic analysis and an insight into the design of code
parameters.

Example 3 (UEP codes for two classes of importance):
The data sequence x = (𝑥1, 𝑥2, . . . , 𝑥𝑘) consists of two
classes of importance: class 𝐴1 consists of 10% of all
data packets which require higher error protection, whereas
remaining 90% in class 𝐴2 are considered less important.
The encoder can utilise a weighted UEP LT code [5], which
uses a nonuniform distribution across data packets, i.e.,
𝜃1/𝜋1 > 𝜃2/𝜋2, which means that the data packet in class 𝐴𝑖

is selected with probability 𝜃𝑖
𝜋𝑖𝑘

, 𝑖 = 1, 2. Alternatively, the
encoder can utilise an EWF code [6], by dividing encoding
packets into two classes - class 𝐵1 of packets encoding only
class 𝐴1 of source packets (the first window of data packets),
and class 𝐵2 encoding the entire data sequence. Two kinds
of UEP fountain codes with two classes of importance are
illustrated in Fig. 1c and 1d as instances of DDFC. By
applying Lemma 1, the recursive equation for asymptotic
analysis of weighted UEP LT codes is given by:

𝑦𝑖,𝑙+1 = exp(−(1 + 𝜀)
𝜃𝑖
𝜋𝑖
Ω′(1− 𝜃1𝑦1,𝑙 − 𝜃2𝑦2,𝑙)),

for 𝑖 = 1, 2, which is consistent with the analysis in [5],
and, in an analogous manner, the asymptotic analysis of EWF

3Ω𝑟𝑎𝑝𝑡𝑜𝑟(𝑥) = 0.0080𝑥 + 0.4936𝑥2 + 0.1662𝑥3 + 0.0726𝑥4 +
+0.0826𝑥5+0.0561𝑥8+0.0372𝑥9+0.0556𝑥19+0.0250𝑥65+0.0031𝑥66
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Fig. 3. Weighted LT codes with an optimised degree distribution.

codes in [6] is another special case of Lemma 1. Furthermore,
with appropriate transformations, we can optimise degree
distribution for weighted LT codes using the following generic
linear program:

LP : min

𝑑max∑
𝑑

𝜔𝑑

𝑑
(4)

𝜔(1− 𝜃1𝑧
𝜃1/𝜋1

𝑖 − 𝜃2𝑧
𝜃2/𝜋2

𝑖 ) ≥ − ln(𝑧𝑖), 𝑖 ∈ 𝑁𝑚,

where 1 = 𝑧1 > 𝑧2 > ⋅ ⋅ ⋅ > 𝑧𝑚 = 𝛿 are 𝑚 equidistant
points on [𝛿, 1]. The solution of this linear program is an edge
perspective degree distribution with maximum degree 𝑑max

which reaches the packet error rate of 𝛿𝜃1/𝜋1 within class 𝐴1

and 𝛿𝜃2/𝜋2 within the class 𝐴2 at the minimum overhead. A
result of this optimisation for 𝑑max = 100, 𝛿 = 0.0075 in
the weighted LT instance with 𝜃1 = 0.184, 𝜋1 = 0.1, we
obtain degree distribution Ω∗(𝑥) = 0.0080𝑥1 + 0.4226𝑥2 +
0.2769𝑥3+0.1515𝑥6+0.0214𝑥7+0.0524𝑥13+0.0123𝑥14+
0.0338𝑥27+0.0212𝑥74. We chose parameter 𝜃1 = 0.184 in or-
der to compare the asymptotic and large blocklength (𝑘 = 105)
packet error rate of the calculated degree distribution with that
of Ω𝑟𝑎𝑝𝑡𝑜𝑟(𝑥), which was used in [5] with the bias parameter
equivalent to 𝜃1 = 0.184 (this bias parameter minimises
packet error rate at the overhead 𝜀 = 0.03). The results
are presented in Fig. 3 and clearly indicate how a designed
degree distribution outperforms Ω𝑟𝑎𝑝𝑡𝑜𝑟(𝑥) both in terms of
the packet error rates and the code overhead. Nonetheless,
we have noted a fragile behaviour of the designed degree
distributions at smaller blocklengths and the robust finite
length design with appropriately modified LP optimisation
remains a problem for further investigations.
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