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Abstract—While the theory of compressed sensing provides
means to reliably and efficiently acquire a sparse high-
dimensional signal from a small number of its linear projections,
sensing of dynamically changing sparse signals is still not well
understood. We pursue a Bayesian approach to the problem of se-
quential compressed sensing and develop methods to recursively
estimate the full posterior distribution of the signal.

I. INTRODUCTION

The advance of Compressed Sensing (CS) [8], [3], the
theory underpinning the efficient and reliable reconstruction
of a sparse signal from a limited number of its (possibly
noisy) linear measurements, has received a significant research
interest over the past few years. Let β ∈ RN be an unknown
vector which is sparse, i.e., at most K � N of its entries are
non-zero, and let:

y = Xβ + ε, (1)

where X ∈ Rn×N is a known measurement matrix, y ∈ Rn
is the observation and noise ε follows a zero-mean gaussian
distribution ε ∼ N (0, σ2In). The results of CS have shown
that with the judicious choice of X (namely, for matrices that
obey a restricted isometry property [3]), even when n � N ,
reliable reconstruction of β is possible and computationally
tractable. One of the common approaches to performing the
signal reconstruction, referred to as Lasso [14], or Basis
Pursuit Denoising (BPDN) [6], is given by:

β̂ = arg min
β

1

2
||y −Xβ||22 + λ||β||1, λ > 0, (2)

for a suitable choice of regularization parameter λ > 0. This
is a convex unconstrained optimization problem, which can be
cast as a quadratic program.

Within the CS framework, one of the problems that has
recently captured attention of various researchers [2], [1], [16]
is that of the sequential estimation of dynamically changing
sparse signals. For example, assume that the previously esti-
mated sparse signal β has undergone small changes, and that
we observe a new batch of measurements

y̆ = X̆β̆ + ε̆. (3)

The aim is to recognise ways for our previous estimate of β
to aid reconstruction of the new signal β̆, by evading the need
to solve a new Lasso/BPDN problem, and thus to possibly
reduce the number of necessary measurements whenever the
signal undergoes a change.

This problem has been addressed by Asif and Romberg
[2], who developed a suite of dynamic algorithms based on
homotopy continuation principles. Similarly to the least angle
regression (LARS) [10] for solving Lasso, these algorithms
trace the piecewise linear path from the solution of the original
optimization program (2) to the solution of the one based on
a new batch of measurements in (3).

In addition, Vaswani [16] combines the established algo-
rithms for CS with a Kalman filtering approach, by initially
using CS to estimate the support of the signal, followed by
a Kalman filter on the currently estimated support, which is
corrected by additional runs of CS, whenever the filtering error
increases. A similar approach was pursued in [1].

In this contribution, we pursue a Bayesian approach to
sequential compressed sensing, and, in contrast to the previous
work, propose a methodology for recursive estimation of the
full posterior distribution of the signal at each time instance.
Namely, a cloud of samples representing the posterior distribu-
tion is updated in a sequential way, following each new batch
of measurements.

The next section overviews the Bayesian alternatives to
point estimation via Lasso/BPDN, and demonstrates the use
of Monte Carlo methods in tracking the posterior distribution.
Section III outlines the state-space model for dynamically
changing sparse signals, and establishes some of its properties,
while Section IV proposes a sequential importance sampling
with resampling to track sparse signal changes, and presents
some empirical results. Section V concludes the paper.

II. BAYESIAN APPROACH TO CS

A. Lasso and sparsity promoting priors

Tibshirani [14] noticed that the Lasso estimate can be inter-
preted as a posterior mode estimate when the signal entries
have independent and identical Laplace prior distributions.
Namely, if we set a prior distribution of β to:
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p(β) =

N∏
j=1

L(βj ;λ) =

N∏
j=1

(
λ

2
e−λ|βj |

)
∝ exp (−λ||β||1) , (4)

the posterior mode is simply:

β̂ = arg max
β

p(β|y)

= arg max
β

−1

2σ2
||y −Xβ||22 + log p(β)

= arg min
β

1

2σ2
||y −Xβ||22 + λ||β||1, (5)

which is exactly the Lasso estimate with the regularization
parameter scaled by the noise variance. Many authors have
used this connection, either to propose the use of other, similar,
sparsity-promoting prior distributions [11] for point estima-
tion, or to study Bayesian variants of the method [13], [12],
aimed at describing p(β|y) in other meaningful ways, such as
confidence intervals, at the cost of being more computationally
intensive. While such methods may not be practical in very
high-dimensional settings, they can nonetheless be used to
quantify uncertainty in estimating sparse signals.

The key observation from [13] is that the Laplace distribu-
tion can be written as a scale mixture of zero-mean gaussian
distributions with an exponential mixing density:

L(βj ;λ) =

ˆ ∞
0

N (βj ; 0, θj)gλ(θj)dθj , (6)

where

gλ(θj) =
λ2

2
exp

(
−λ

2

2
θj

)
. (7)

This means that after conditioning on the hyperparameters
θ1, θ2, . . . , θN , β is simply a multivariate gaussian:

β|θ1, θ2, . . . , θN ∼ N (0N , D(θ)), (8)

where D(θ) = diag(θ1, θ2, . . . , θN ).
It turns out that this representation as a scale mixture of

gaussians is shared by many other sparsity-promoting distri-
butions studied in the literature [5], [13]. For example, one
such model [4] considers generalized hyperbolic distributions
and assigns an independent and identical scale mixture of
gaussians to each signal entry βj , j ∈ {1, 2, . . . , N}:

p(βj) =

ˆ ∞
0

N (βj ; 0, θj)p(θj)dθj , (9)

where θj , j ∈ {1, 2, . . . , N}, follows a generalized inverse
gaussian distribution GIG(ν, δ, λ) with density
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Figure 1. Posterior distribution p(β|y) estimated by Gibbs sampler

GIG(θj ; ν, δ, λ) =

(λ/δ)ν

2Kν(λδ)
θν−1j exp

[
−1

2
(δ2θ−1j + λ2θj)

]
, (10)

where Kν(z) is the modified Bessel function of the second
kind.

For ν = 1, δ = 0, this model recovers a Laplace prior
distribution, but it encompasses others, including the normal
gamma law and the normal inverse gaussian law [5].

B. Sampling from p(β|y)

Assuming a general prior in (9), we can easily sample
from p(β|y) by sampling from p(β, θ|y) using the Gibbs
sampler, based on the following full conditionals: for j =
{1, 2, . . . , N},

θj |βj , y ∼ GIG
(
ν − 1/2,

√
δ2 + β2

j , λ
)
, (11)

and

β|θ, y ∼ N
(
µ(i),Σ(i)

)
, (12)

where

µ(i) =
(
X>X + σ2D(1/θ(i))

)−1
X>y

Σ(i) = σ2
(
X>X + σ2D(1/θ(i))

)−1
. (13)

The conditional (11) is obtained by noticing that p(θ|β, y) ∝
p(y|β)

∏N
j=1 p(βj |θj)p(θj), while (12) is a simple Bayesian

linear regression. Thus, both conditional distributions are
available in closed form and can be sampled from exactly. The
details on how to efficiently sample from generalized inverse
gaussian distribution are available in [7].

In Fig. 1, a boxplot of a posterior distribution p(β|y)
estimated by a Gibbs sampler for example where N = 32,
n = 16, K = 4, σ2 = 0.05, ν = 1, δ = 0 and λ = 0.05.
Black squares denote the true value of the signal - they are
within the credible intervals for each of the entry. We have
initialized Gibbs sampler with β(0) = X>y.
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III. SPARSE DYNAMICAL SYSTEM - MODEL AND
PROPERTIES

A. Model

We will consider the following state-space model:

βt = Ptβ
t−1 + zt

yt = Xtβ
t + εt, (14)

where for all t, Pt is a known orthogonal N × N matrix,
zt is the innovation in the signal evolution, Xt is a known
n × N measurement matrix and the entries of εt follow
a zero mean gaussian distribution of known variance σ2.
Since we would like our model to capture the evolution of
the sparse signals β1, β2, . . . ,∈ RN which share “common
sparsity”, we can think of Pt as being either the identity or
a known permutation matrix, but the model properties hold
regardless of this simplification. In addition, we assume that zt

is also sparse, and thus we aim to simultaneously enforce the
following prior information for all t and for j ∈ {1, 2, . . . , N},

p(βtj) =

ˆ ∞
0

N (utj ; 0, utj)p(u
t
j)du

t
j ,

p(ztj) =

ˆ ∞
0

N (ztj ; 0, vtj)p(v
t
j)dv

t
j , (15)

where utj and vtj follow the identical and independent
generalized inverse gaussian distributions GIG(ν, δ, λu) and
GIG(ν, δ, λv) respectively. This model combines two kinds
of prior information: temporal dependence and sparsity of the
signal at each time step. It can be easily shown that, in the case
of Laplacian priors, the mode of the posterior p(βt|y, βt−1)
is given by:

β̂t = arg min
β

1

2
||yt −Xtβ||22+

+ λu||β||1 + λv||β − Ptβt−1||1, λu, λv > 0 (16)

which is a point estimate similar to that of the fused lasso by
Tibshirani et al [15].

B. Conditionally linear gaussian structure

In the rest of this section we will use the following propo-
sition.

Proposition 1. Let Q, R be N ×N covariance matrices, and
let B be an N ×N matrix. Then, ∀β, β̆ ∈ RN ,

N (β̆;0, Q)N (β;Bβ̆,R) =

N (β̆; ΣB>R−1β,Σ)N (β;0, R+BQB>) (17)

where Σ = (Q−1 +B>R−1B)−1.

Proof: We start with

N (β̆; 0, Q)N (β;Bβ̆,R) =

1

(2π)N
√

det(Q) det(R)
exp(−1

2
Φ), (18)

where

Φ = β̆>Q−1β̆ + (β −Bβ̆)>R−1(β −Bβ̆) =

β̆>(Q−1 +B>R−1B)β̆> − 2β̆>B>R−1β + β>R−1β.
(19)

By substituting

Σ = (Q−1 +B>R−1B)−1

µ = (Q−1 +B>R−1B)−1BTR−1β, (20)

we obtain:

Φ = (β̆ − µ)>Σ−1(β̆ − µ) +

+ β>(R−1 −R−1B(Q−1 +B>R−1B)−1B>R−1)β

= (β̆ − µ)>Σ−1(β̆ − µ) + β>(R+BQB>)β, (21)

where in the last step we used the Woodbury matrix identity.
Also,

det
(
(Q−1 +B>R−1B)−1

)
· det(R+BQB>) =

det(R) · det(I +B>R−1QB)

det(Q−1) · det(I +BR−1QB>)
=

det(R) · det(Q), (22)

which together with (21), proves the claim. In the first step of
(22), we used det(M + XY ) = det(M) det(I + YM−1X)
for any invertible matrix M , while in the second step we used
that det(M>) = det(M).

Now, since

p(βt|βt−1, ut, vt) ∝
p(βt|ut)p(βt−1|βt, vt) ∝

N (βt; 0, D(ut))N (βt−1;P>t β
t, P>t D(vt)Pt), (23)

by applying Proposition 1 to the above product of gaussian
densities, we see that the conditional probability p(βt|βt−1)
can be written as a mixture of multivariate gaussian distribu-
tions:

p(βt|βt−1) ∝
ˆ ˆ

N
(
βt;D(

utvt

ut + vt
)Ptβ

t−1, D(
utvt

ut + vt
)

)
·

g
(
ut, vt|βt−1

)
dutdvt, (24)

where the mixing density is given by
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g
(
ut, vt|βt−1

)
∝

N∏
j=1

[
GIG(utj ; ν, δ, λu)GIG(vtj ; ν, δ, λv)

]
·

N (βt−1; 0, P>t D(ut + vt)Pt) (25)

This can be interpreted in the following way: given some
hyperparameters ut and vt, our model is equivalent to the
following linear gaussian dynamical system:

βt = D(
ut

ut + vt
)Ptβ

t−1 +N
(

0, D(
utvt

ut + vt
)

)
,

yt = Xtβ
t +N (0, σ2In), (26)

which can be solved exactly by a Kalman filter. Note that
D( ut

ut+vt )Pt in (26) can be interpreted as a “shrinkage” matrix,
which effectively plays the role of keeping the evolving signal
βt approximately sparse.

IV. SEQUENTIAL MONTE CARLO SAMPLER

We will now investigate a method based on sequen-
tial importance sampling with resampling (see, e.g., [9]
and references therein), which aims to represent the
full posterior distribution p(β0:T |y1:T ) by sampling from
p(β0:T , u1:T , v1:T |y1:T ). The main idea of the method is to
track a cloud of samples that represents p(βt|y1:t) and update
it in a sequential way. Based on the underlying conditionally
linear gaussian structure of the state-space model, at every time
step, given a cloud of samples of ut,vt and βt−1, we can find
the exact corresponding distributions of βt using the Kalman
Filtering equations. Note that, if no estimate of β0 is available,
samples from p(β1|y1) can be obtained via the Gibbs sampler
described in Section 2. This suggests a sequential Monte Carlo
sampler which uses importance sampling with resampling to
obtain a cloud of samples of ut, vt first, and then samples from
the conditional posterior p(βt|βt−1, yt, ut, vt), which is just a
multivariate gaussian. Thus, the overall sampling distribution
is:

π(β0:T , u1:T , v1:T |y1:T ) ∝
T∏
t=1

[
p(βt|βt−1, yt, ut, vt)·

π(ut, vt|β0:t−1, y1:t)

]
. (27)

At the t-th time step, given S samples
{
β0:t,(i)

}S
i=1

from (27),
we approximate the posterior distribution p(β0:t|y1:t) by:

p̂(β0:t|y1:t) =
S∑
i=1

w
(i)
t δ(β0:t,(i)). (28)

The importance weights w(i)
t in the implementation of the

sequential importance sampling with resampling can be eval-
uated recursively as successive observations become available
as:

w
(i)
t ∝ w

(i)
t−1·

p(yt|ut,(i), vt,(i), βt−1,(i))g(ut,(i), vt,(i)|βt−1,(i))
π(ut, vt|β0:t−1, y1:t)

, (29)

where p(yt|ut, vt, βt−1) is a multivariate gaussian, given
by:

p(yt|ut, vt, βt−1) =

N
(
yt;XtD

(
ut

ut + vt

)
Ptβ

t−1, XtD

(
utvt

ut + vt

)
X>t

)
.

(30)

If the effective sample size Seff = 1/
∑S
i=1

(
w

(i)
t

)2
is smaller than a prescriped threshold S̃, we perform the
resampling step. Following the resampling, we obtain the
sample βt,(i) from

p(βt,(i)|βt−1,(i), yt, ut,(i), vt,(i)) = N (βt,(i);µt,(i),Σt,(i)),
(31)

where

µt,(i) =

(
1

σ2
X>t Xt +D

(
ut,(i) + vt,(i)

ut,(i)vt,(i)

))−1
·(

D

(
1

vt,(i)

)
Ptβ

t−1,(i) +
1

σ2
X>t y

t

)
,

Σt,(i) =

(
1

σ2
X>t Xt +D

(
ut,(i) + vt,(i)

ut,(i)vt,(i)

))−1
. (32)

There are various different ways to make a judicious choice
of importance distribution π(ut, vt|β0:t−1, y1:t) in (27), but,
for clarity of exposition, we will focus on a simple case where
π(ut, vt|β0:t−1, y1:t) = g

(
ut, vt|βt−1

)
. This choice is very

convenient, as in the case where λu = λv = λ, and δ = 0,
the entries of the sum of ut and vt can be shown to follow a
generalized inverse gaussian distribution:

p(utj + vtj = θtj |βt−1j ) =

GIG
(
θtj ; ν + 1/2, βt−1j , λ

)
. (33)

This means that we can sample exactly and easily from
g
(
ut, vt|βt−1

)
, since we have

p(utj |θtj) =
1{0 ≤ utj ≤ θtj}

θtj
. (34)

In Figures 2-5, we have presented some preliminary results
of applying a sequential Monte Carlo sampler to the dynam-
ically evolving sparse signals, showing the boxplots of the
estimated posterior distributions and representing both the case
where the signal does not undergo any support change (Figures
2 and 3) and the case where two changes in the support occur
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Figure 2. The iterations 1-4 of the sequential Monte Carlo sampler, no change in support
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Figure 3. The iterations 5-8 of the sequential Monte Carlo sampler, no change in support
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Figure 4. The iterations 1-4 of the sequential Monte Carlo sampler, change in support
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Figure 5. The iterations 5-8 of the sequential Monte Carlo sampler, change in support
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(Figures 4 and 5). The parameters were N = 32, n = 10,
σ2 = 0.05, ν = 1, δ = 0 and λ = 0.05. We observe
that the true signal values marked in open circles lie in most
cases within the credible intervals, indicating that the method
successfully updates the posterior distribution based on the
new batch of measurements. While in many cases the posterior
distribution appears peaked, implying that a point estimate
based on either the mode or the median of the posterior would
be sufficient, instances can also be observed where the credible
interval is much wider, illustrating the utility of the method in
quantifying uncertainty in the signal reconstruction.

V. CONCLUSIONS

We derive a Bayesian framework for compressed sensing of
dynamically changing sparse signals and present a hierarchical
model for performing sequential estimation of the full poste-
rior distribution. We propose a method of tracking posterior
distributions recursively via sequential Monte Carlo sampling,
and show how our model of a sparse dynamical system can
be represented as a conditionally linear Gaussian state space
model, leading to some interesting analytical properties of
the method, as many quantities involved can be calculated
by using Kalman filtering equations. A more judicious choice
of importance functions may improve the efficiency of the
method, by allowing us to track smaller sample sizes. For
example, in the case of the Laplace priors, the fact that the
posterior modes can be estimated successively by convex
optimization may be utilized in the design of importance
functions.
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