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Abstract—An information theoretic perspective on group test-
ing problems has recently been proposed by Atia and Saligrama,
in order to characterise the optimal number of tests. Their
results hold in the noiseless case, where only false positives
occur, and where only false negatives occur. We extend their
results to a model containing both false positives and false
negatives, developing simple information theoretic bounds on the
number of tests required. Based on these bounds, we obtain an
improved order of convergence in the case of false negatives only.
Since these results are based on (computationally infeasible) joint
typicality decoding, we propose a belief propagation algorithm
for the detection of defective items and compare its actual
performance to the theoretical bounds.

I. INTRODUCTION AND PROBLEM OUTLINE

The idea of group testing was introduced during World War
II in order to reduce the cost of large scale blood tests by
pooling blood samples together [5]. Since then, it emerged as a
promising approach in various applications, including multiple
access communications and DNA clone library screening (cf.
[6] and references therein).

The advent of compressed sensing (CS) has revived interest
in group testing [3], as both problems involve the detection of a
sparse high-dimensional signal via a small number of random
measurements. However, the compressed sensing literature
has mostly focussed on problems with measurement matrices
with entries taken from distributions with densities. Group
testing naturally belongs in a broader framework of discrete
compressed sensing, where the entries are random integers,
often just 0s and 1s. This framework of discrete compressed
sensing includes wider applications such as genotyping [7]. An
extension of the group testing problem to the scenario where
pools must conform to the constraints imposed by a graph has
also been studied recently [4].

An information theoretic approach to a noisy version of
group testing was recently developed by Atia and Saligrama
[1], [2]. We adopt much of their model and notation, which we
will first briefly review. We will use group testing to identify K
defective items within a larger collection of N items, by testing
a pool of items at a time. Each test reveals whether the pool
contains any defective items, i.e., the test result is positive, or
1, if at least one of the items in the pool is defective, and it
is otherwise negative, or 0. However, we will allow two types
of errors to occur in the testing.

1) False positives, where the test result is positive with
probability q when the pool does not contain any defec-
tive items. In other words, the result of the test is ORed
with Bernoulli(q) random variable.

2) False negatives - the indicator whether an item is
defective is “diluted” with probability u. In other words,
the result of the test will only be positive if the indicator
of some defective item passes through a Z-channel
successfully.

Note that the false negatives make the analysis significantly
more complicated than for standard coding theoretic problems.
This is because this model makes the noise dependent on the
input, because a pool with more defective items will be less
likely to return a false negative. Interestingly, our results here
indicate that false negatives are, in a certain sense, easier to
deal with than false positives, and we obtain an improved order
of convergence on the number of achievable tests in the case
of false negatives only.

Another way to describe the false negative process is that
the test will be positive if the sum of the indicators, thinned
in the sense of Rényi, is positive. In future work we hope to
explore whether the bounds on entropy under thinning proved
in [8] can improve or generalize the results of this paper.

We now formally describe the model which incorporates the
presence of these two kinds of testing errors.

Definition 1. Let β ∈ {0, 1}N be a column vector of
indicators corresponding to the overall set of items, i.e., βi = 1
iff item i is defective. We consider the case w(β) = K � N ,
where w(·) represents the Hamming weight. Furthermore,
X = (xti) ∈ {0, 1}T×N will denote the measurement matrix,
s.t. xti = 1 iff item i is pooled in test t. We will restrict our
attention to the case where X is composed of i.i.d. Bern(p)
entries. A set of test results is a vector y ∈ {0, 1}T , where
yt = 1 means test t is positive. The outcome yt of test t is
given by (symbol ∧ stands for Boolean matrix product):

yt = (xt ∧Dt ∧ β) ∨ zt, t ∈ {1, 2, . . . , T}. (1)

Here xt denotes the t-th row of X, Dt ∈ {0, 1}N×N is a
diagonal matrix with i.i.d. Bern(1−u) entries on the diagonal,
independent of β and X, and zt is a Bern(q) random variable,
independent of all others.
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This compact notation captures both the false positive test
results which occur when zt = 1, and the false negative test
results which occur in the event that all the diagonal entries of
Dt corresponding to the defective items in pool t equal zero.

In [1], Atia and Saligrama showed how group testing can
be viewed analogously to channel coding by considering a set
of K channels, with input X(i) and the pair (X(K−i), Y ) as
their output, i ∈ {1, 2, . . . ,K}. Here, X(i) stands for the i
entries in the row of the measurement matrix corresponding
to (any) i defective items, and Y is the test outcome (viewed
as a random variable). Atia and Saligrama prove the following
result:

Theorem 2. ([1], Theorem 3.2) Consider the joint typicality
decoder in the model of Definition 1, in the case where one
or both of q = 0 or u = 0 (the model is noisefree, or allows
false positives or false negatives, but not both). An achievable
number of tests Ttyp which allows perfect detection is given
by:

Ttyp = max
i

log2
(
N−K
i

)(
K
i

)
I(X(i);X(K−i), Y )

. (2)

We now describe the structure of the remainder of this paper.
We will consider the model of Definition 1, in the case where
both q and u can be non-zero (both false positives and false
negatives are allowed). For reasons of space, we will assume
that an analogue of Equation (2) holds in the case q > 0 and
u > 0. (To verify this requires a somewhat lengthy analysis of
the probability that X and Y are jointly typical, as performed
in the Appendix of [1]). This means that the key quantity
of interest is the mutual information I(X(i);X(K−i), Y ). We
will analyse this quantity in Section II, as in [1] deducing
asymptotic results of the form Ttyp = O(K log(K(N −K)).
We also deduce that in the case where only false negatives
occur, the number of tests required can be reduced by a factor
of logK.

In Section III, we propose a belief propagation algorithm
for the detection of the defective items in noisy group testing.
The analysis of Theorem 2 is based on the use of a joint
typicality decoder, which is infeasible in practice, having
prohibitive computational complexity in the limit of large K
and N . Belief propagation offers a practically implementable
alternative. Belief propagation has previously been used in
the statistical physics community to address the problem of
noiseless group testing and its relationship to the hitting set
problem [9].

II. ASYMPTOTIC BOUNDS

In this section, we will derive sharp bounds on the mutual
information of Equation (2):

Lemma 3. The mutual information I(X(i);X(K−i), Y ) can
be expressed in closed form as I1+I2, where the “lead term”
is:

I1 = i(1− q)(1− p+ pu)K ·(
pu

1− p+ pu
log2 u− log2(1− p+ pu)

)
. (3)

and the “error term” is:

I2 =
1

log 2

∞∑
j=2

[
(1− q)j

j(j − 1)
.

(1− p+ puj)K

(
1−

(
(1− p+ pu)j

1− p+ puj

)i)]
(4)

Proof: As in [1], we decompose

I(X(i);X(K−i), Y ) = H(Y |X(K−i))−H(Y |X(K)), (5)

and consider the two terms separately. First, we set V = X ∧
D ∧ β, and notice that

P(Y = 0|w(X(K)) = j) =

P(Z = 0)P(V = 0|w(X(K)) = j) =

(1− q)uj , (6)

which means that, writing h(·) for the binary entropy function,

H(Y |X(K)) =
K∑
j=0

(
K

j

)
pj(1− p)K−jh

[
(1− q)uj

]
. (7)

Similarly,

P(Y = 0|w(X(K−i)) = l) =

P(Z = 0)P(V = 0|w(X(K−i)) = l) =

(1− q)
l+i∑
j=l

[
P(V = 0|w(X(K)) = j)·

P(w(X(K)) = j|w(X(K−i)) = l)
]
=

(1− q)
l+i∑
j=l

ujP(w(X(i)) = j − l) =

(1− q)ul
i∑

j=0

uj
(
i

j

)
pj(1− p)i−j =

(1− q)ul(1− p+ pu)i, (8)

whereby we obtain:

H(Y |X(K−i)) =
K−i∑
l=0

[(
K − i
l

)
pl(1− p)K−i−l·

h
(
(1− q)ul(1− p+ pu)i

)]
. (9)
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We substitute the expressions (7) and (9) into Equation (5),
and analyse the resulting sum. We use an expansion of binary
entropy as

h(θ) = (−θ log2 θ) +
1

log 2

θ − ∞∑
j=2

θj

j(j − 1)

 , (10)

with the first bracketed term becoming (3), and the remaining
expression becoming (18).

Observe that for any j ≥ 2, the function g(p) = (1 − p +
puj) − (1 − p + pu)j ≥ 0. This means that the bracketed
term in (18) is positive, and so as in [1], we could simply
use the lower bound I(X(i);X(K−i), Y ) ≥ I1 in Theorem 2.
However, in many cases I2 turns out to play a significant role,
and so by including it in our analysis we obtain better bounds.

Lemma 4. Choosing p = (1 − u)−1/K, we obtain that for
constant i, q and u

I1 =
i(1− u)(1− q)(u log u− u+ 1)

Ke log 2
+O

(
1

K2

)
. (11)

Proof: By setting p = α/K, and expanding Equation (3)
in powers of 1/K, we obtain

I1 =
αi(1− q)eα(u−1)(u log u− u+ 1)

Ke log 2
+O

(
1

K2

)
. (12)

We can optimize this expression over α by taking α = 1/(1−
u), which justifies the heuristic choice of p = 1/K to define
the measurement matrices in [1].

Note that in the cases u = q = 0 and u = 0 respectively we
recover i/(Ke log 2) from (15) of [1] and i(1−q)/(Ke log 2)
from (29) of [1]. In the case q = 0, this optimal choice of
α gives us a lower bound of i(1 − u)/(2Ke log 2), a slight
improvement on (37) of [1].

Similarly, it can be shown that with p = α/K,

lim
K→∞

KI2 =
αi

log 2

∞∑
j=2

[
(1− q)j

j(j − 1)
·

eαu
j−α(uj + j − ju− 1)

]
. (13)

It is easy to see that the series in (13) is converging for q 6= 0.
Furthermore, by repeatedly using the sum

∞∑
j=2

θj

j(j − 1)
= θ + (1− θ) log(1− θ), (14)

and the obvious inequality 0 ≤ uj ≤ u2, for j ≥ 2, we obtain:

αe−αi

log 2
Cq,u ≤ lim

K→∞
KI2 ≤

αe−αi

log 2
eαu

2

Cq,u, (15)

where

Cq,u = q − (1− u+ qu)(1 + log q − log(1− u+ qu)). (16)

Notice that Cq,u = ∞ when q = 0. This suggests that I2 is
of a larger order in this case. Indeed, the following Lemma
holds:

Lemma 5. In case q = 0, I2 = O( logKK ). In particular,

αe−αi

log 2
(1−u) ≤ lim

K→∞

K

logK
I2 ≤

αe−αi

log 2
eαu

2

(1−u). (17)

Proof: In

I2 =
1

log 2

∞∑
j=2

[
(1− p+ puj)K

j(j − 1)
.(

1−
(
(1− p+ pu)j

1− p+ puj

)i)]
(18)

we notice that (1 − p + puj)K ↑ e−α(1−uj) ≤ e−α(1−u
2), as

K →∞, whereas (1− p+ puj)K ≥ (1− p)K . Therefore, by
applying (14) with θ = (1− p+ pu)i, we obtain that ∀i,K,

(1− p)K

log 2

[
1− (1− p+ pu)i

(1− p)i
+

(1− (1− p+ pu)i) log(1− (1− p+ pu)i)

(1− p)i

]
≤

≤ I2 ≤

≤ e−α(1−u
2)

log 2

[
1− (1− p+ pu)i

(1− p+ pu2)i
+

(1− (1− p+ pu)i) log(1− (1− p+ pu)i)

(1− p+ pu2)i

]
. (19)

Now, by developing both sides in powers of 1/K,

αe−αi

log 2
·(

(1− u) [logK − log(αi− αiu)]− u
K

)
+O

(
1

K2

)
≤

≤ I2 ≤

≤ αe−α(1−u
2)i

log 2
·(

(1− u) [logK − log(αi− αiu)]− u+ u2

K

)
+

O
(

1

K2

)
, (20)

which proves the claim.

Theorem 6. Assuming that an equivalent of Theorem 2 holds
in the general case, using Lemmas 3, 4 and 5, we deduce:
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Figure 1. The bounds on the constant in the asymptotic estimate Ttyp =
O(K log(K(N −K)) for u = 0.05, q = 0.01.

(i) For any q > 0, u ≥ 0, as K →∞,

Ttyp = O(K log(K(N −K)). (21)

In particular,

αe−αCq,u ≤

lim
K→∞

(
K log(K(N −K))

Ttyp
−

α
[
e−α(1−u)(1− q)(u log u− u+ 1)

])
≤

αe−α(1−u
2)Cq,u. (22)

(ii) For q = 0, and any u ≥ 0, as K →∞,

Ttyp = O
(
K(1 +

log(N −K)

logK
)

)
. (23)

In particular,

αe−α(1− u) ≤

lim
K→∞

K log(K(N −K))

Ttyp logK
≤

αe−α(1−u
2)(1− u). (24)

Notice that in the case of noiseless group testing, i.e., u = 0,
q = 0, we arrive at the exact asymptotic expressions for Ttyp:

Ttyp = eK(1 +
log(N −K)

logK
). (25)

In the noisy case, the derived bounds are sharp. Fig. 1
depicts the quantities bounding limK→∞

K log(K(N−K))
Ttyp

as a
function of α for u = 0.05 and q = 0.01. The bounds coincide
in the first two decimal places.

III. BELIEF PROPAGATION RECONSTRUCTION

The joint typicality decoder analysed in Section II has
prohibitive computational complexity in the limit of large K
and N . In this section, we compare the theoretical performance
with the performance of belief propagation (BP) decoder,
which performs an approximate bitwise MAP (maximum a
posteriori) detection of defective items by solving:

β̂
(MAP )
i = arg max

βi∈{0,1}
P(βi|y), i ∈ {1, 2, . . . , N}. (26)

The above can be transformed into:

β̂
(MAP )
i = arg max

βi∈{0,1}

∑
∼βi

 T∏
t=1

P(yt|βsupp(yt))
N∏
j=1

P(βj)


= arg max

βi∈{0,1}

∑
∼βi

[
T∏
t=1

P(yt|w(βsupp(yt))) ·

N∏
j=1

(
λδβj (1) + (1− λ)δβj (0)

)]
, (27)

where λ = K/N . Therefore, MAP detection amounts to the
marginalisation of a function which permits a sparse factori-
sation, and as such can be performed efficiently via message
passing on a factor graph corresponding to the measurement
matrix X.

The belief propagation message-update rules are given by:

m
(l+1)
i→t (βi) ∝ (λδβi

(1) + (1− λ)δβi
(0)) ·∏

b∈N (i)\{t}

m̂
(l)
b→i(βi), (28)

m̂
(l)
t→i(βi) ∝

∑
∼βi

[
P(yt|w(βsupp(yt)))·

∏
j∈N (t)\{i}

m
(l)
j→t(βj)

]
. (29)

The fact that P(yt|βsupp(yt)) = P(yt|w(βsupp(yt))) greatly
simplifies the message-passing update rules. In particular,
since P(yt|w(βsupp(yt))) = (1 − q)uw(βsupp(yt)

) due to the
symmetry between xt and β in (1), the above equations, by
rewriting message-update rules in terms of log-ratios, i.e.,

L
(l)
i→t = log

m
(l)
i→t(1)

m
(l)
i→t(0)

, L̂
(l)
t→i = log

m̂
(l)
t→i(1)

m̂
(l)
t→i(0)

. (30)

simplify to:

L
(l)
i→t =

{
log λ

1−λ , l = 0,

log λ
1−λ +

∑
b∈N (i)\{t} L̂

(l)
b→i, l ≥ 1,

(31)

and
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L̂
(l)
t→i =

log

u+
1− u

1− (1− q)
∏
j∈N (t)\{i}

(
u+ 1−u

1+exp(L
(l)
j→t)

)
 ,

(32)

in the case of a positive t-th test, i.e., when yt = 1, and simply

L̂
(l)
t→i = log u, (33)

for yt = 0.
In a preliminary assessment of the belief propagation recon-

struction, we simulated BP decoder for noisy group testing in
the case where N = 5000, K = 50, u = 0.05, q = 0.01, and
for various values of parameter p. We performed at least 200
trials at the various numbers of tests. The number of iterations
was fixed to 50.

As illustrated in Fig. 2, the detected probability of perfect
reconstruction increases with p, and is about 99% when the
number of tests was T ≈ 1600 for p = 0.02. The value of
p which performs best here is 1/K, suggesting that the same
heuristics concerning the optimal p discussed for typical set
decoding also apply for belief propagation.

In Fig. 3, we illustrated the number of detection errors
per size of the support as a function of the number of tests.
This figure illustrates that even though a large probability of
perfect reconstruction is achieved only at the relatively large
number of tests, the BP decoder typically diagnoses only
a few items incorrectly at the number of tests as small as
T ≈ 900. These results are still far from the estimate arising
from the asymptotic analysis of joint typicality decoder in
the previous section, which is Ttyp ≈ 400, but nonetheless
confirm the utility of the belief propagation algorithm in noisy
group testing, even though no design of the measurement
matrix that complies well with belief propagation algorithm
has been taken into consideration. It may also be possible to
achieve further improvements in performance by using belief
propagation with decimation as in [9].

IV. CONCLUSIONS

This extended abstract studies the information theoretic
bounds arising in the problem of noisy group testing and
proposes an efficient algorithm for noisy group testing based
on belief propagation. We develop a sharp estimate on the
constants arising in the asymptotic approximation of the
number of tests sufficient for the perfect detection via a joint
typicality decoder, as a function of the noise parameters. We
show how the presence of the false positives in the noisy group
testing changes the order of the achievable number of tests.
These result allows us to benchmark the performance of a
belief propagation algorithm. We restrict our attention here
to the case where the measurement matrix is composed of
i.i.d. Bernoulli entries. More general measurement matrices
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Figure 2. Probability of perfect reconstruction with BP at N = 5000,
K = 50.
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Figure 3. The number of detection errors per size of the support with BP
at N = 5000, K = 50.

can be studied in a similar manner, in particular those with
row weights generated according to a pre-optimised degree
distribution. A judicious choice of degree distributions may
further improve the performance of the belief propagation
algorithm, in analogy with well known results in sparse graph
coding.
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