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Fountain Code Design for Data Multicast with
Side Information

Dino Sejdinović, Robert J. Piechocki, Angela Doufexi, and Mohamed Ismail

Abstract—Fountain codes are a robust solution for data multi-
casting to a large number of receivers which experience variable
channel conditions and different packet loss rates. However,
the standard fountain code design becomes inefficient if all
receivers have access to some side information correlated with
the source information. We focus our attention on the cases
where the correlation of the source and side information can
be modelled by a binary erasure channel (BEC) or by a binary
input additive white Gaussian noise channel (BIAWGNC). We
analyse the performance of fountain codes in data multicasting
with side information for these cases, derive bounds on their
performance and provide a fast and robust linear programming
optimization framework for code parameters. We demonstrate
that systematic Raptor code design can be employed as a possible
solution to the problem at the cost of higher encoding/decoding
complexity, as it reduces the side information scenario to a
channel coding problem. However, our results also indicate that
a simpler solution, non-systematic LT and Raptor codes, can be
designed to perform close to the information theoretic bounds.

Index Terms—Fountain codes, distributed compression, joint
source-channel coding, side information.

I. INTRODUCTION

FOUNTAIN codes are a universal, capacity-approaching
Forward Error Correction (FEC) solution for data trans-

mission over lossy packet networks. The first practical foun-
tain codes were Luby-Transform (LT) codes [2], whereas
their extension, Raptor coding [3], represents a state-of-the-art
digital fountain solution for lossy transmission with excellent
performance and linear encoding/decoding complexity. The
property of ratelessness, i.e., the ability to adapt the code
rate on-the-fly, makes fountain codes an attractive solution for
data broadcast/multicast and asynchronous data access based
applications where users may experience varying channel
conditions and packet loss rates, such as mobile environments.
It is possible to adapt fountain codes for reliable transmission
over noisy channels [4]–[7], as they are more amenable
to soft-decision decoding than classical erasure correcting
codes, such as Reed-Solomon codes. Even though it has been
demonstrated that universal code parameters generally do not
exist for memoryless symmetric channel models [7], fountain
codes have shown promising performance in practice over
channels such as the binary input additive white Gaussian
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noise channel (BIAWGNC) [7] and block-fading channels [6].
Following the advent of interest in fountain codes, the notion
of fountain capacity has been introduced [8], such that the
definition of rate penalizes the reception of symbols at the
receiver rather than the use of the channel at the transmitter.
It has been shown that for stationary memoryless channels,
fountain capacity suffers no rate loss compared to Shannon
capacity. In addition to channel coding, fountain codes have
been used in the context of lossless data compression [9],
distributed source coding [10], [11], distributed joint source-
channel coding [12]–[14] and transmission of video [13], [15],
[16]. A systematic version of Raptor codes is being adopted as
the application layer forward error correction scheme of choice
for large scale multimedia content delivery in standards such
as Multimedia Broadcast/Multicast Services (MBMS) within
Third Generation Partnership Project (3GPP) [17] and the IP-
Datacast services within Digital Video Broadcasting (DVB)
[18].

In this contribution, we consider the design of fountain
codes as applied to the problem of multicast transmission,
where receivers have access to apriori side information 𝑌
about the source 𝑋 . A common way to model the correlation
between 𝑋 and 𝑌 is to view them as the input and the output,
respectively, of a certain communication channel, referred to
as the correlation channel or virtual channel. We will focus
on the fountain code design problem for two special cases of
the correlation channel: (1) coding with partial information
- 𝑌 is a partial information about 𝑋 , i.e., the output of a
binary erasure channel (BEC) when 𝑋 is the input; and (2)
Gaussian correlation - 𝑌 = 𝑋 + 𝒩 (0, 𝜎2), where 𝑋 is
the binary information source over the alphabet {−1, 1}. As
coding with side information is an instance of the problem
of distributed source coding, our scenario incorporates both
distributed source compression and channel coding gains as
goals of the fountain code design. A systematic Raptor design
is employed as a possible solution to the problem, which
reduces the side information scenario to a simple channel
code design problem at the cost of higher encoding/decoding
complexity. Similar model has been independently reported
in [10]. In addition, we present novel code design methods
which utilize the presence of decoder side information and
aim to provide both the distributed source compression scheme
and the channel coding scheme in a single (non-systematic)
fountain code. For coding with partial information, we de-
velop a code optimization procedure which yields superior
performance compared to that of [19], where a similar adaptive
rateless coding scenario has been independently studied.

In section II the relevant concepts about LT and Raptor
codes are reviewed. In section III, the system model and
our assumptions are outlined, while section IV considers
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systematic Raptor codes for coding with side information. In
section V results are presented for a non-systematic fountain
code design for an erasure correlation channel, whereas the
Gaussian correlation case is studied in section VI. Section
VII concludes the paper.

II. FOUNTAIN CODES FOR CHANNEL CODING

A. The digital fountain paradigm

The digital fountain paradigm, introduced in [20], aims
to enable the transmitter to produce a potentially infinite
stream of encoding symbols which are all random and equally
important descriptions of the source. Ideally, such a coding
apparatus would be sufficient for a reliable transmission over
any channel. The receiver could collect any set of encoding
symbols as long as there is a sufficient number of them
to guarantee a large probability of successful decoding. A
practicable construction of fountain coding schemes allows
broadcasting/multicasting systems where: (a) there is no need
for feedback nor retransmissions of lost encoding symbols,
and (b) users benefit from the asynchronous data access.

Similarly to low-density parity-check (LDPC) codes, practi-
cal fountain codes utilize their sparse graphical representation
in order to perform the decoding procedure of low computa-
tional complexity. The decoding algorithm of choice is Belief
Propagation (BP) [21].

BP decoding is especially simple in the case of erasure
channels and simplifies to a greedy graph pruning procedure
[22]. This means that BP decoding can be performed on data
packets. The existence of an information sequence containing
𝑘 binary data packets, i.e., binary vectors of some fixed length,
is implicit in our discussion and it is assumed that the encod-
ing packets are produced by bitwise XOR-ing original data
packets. However, in the case of soft decision BP decoding, we
assume that the information sequence consists of 𝑘 symbols on
binary alphabet 𝔽2. This enables us to simplify the message-
passing rules of the BP algorithm in terms of log-likelihood
ratios (LLR). The performance of a fountain code is typically
measured in terms of the average error rate per symbol, i.e.,
per bit or per packet, as the function of code overhead 𝜀, where
𝑛 = 𝑘

𝐶𝑎𝑝(𝒞) (1 + 𝜀) is the number of encoding symbols at the
receiver, 𝑘 is the block length and 𝐶𝑎𝑝(𝒞) is the capacity
of the transmission channel 𝒞. A sequence of fountain codes
approaches capacity if it attains an arbitrarily small error rate
at a code overhead arbitrarily close to zero.

B. LT codes and output degree distributions

LT (Luby Transform) codes [2] are the first class of fountain
codes fully realizing the digital fountain paradigm. The only
two parameters of an LT code ensemble 𝐿𝑇 (𝑘,Ω(𝑥)) are
the length of information sequence 𝑘 and the probability
distribution Ω on the set 𝑁𝑘 = {1, 2, . . . , 𝑘}. The distribu-
tion Ω(𝑥) is called the output degree distribution, since it
determines the degrees of the output nodes in the decoding
graph. The output degree distribution is usually written in
the generating polynomial notation1 as Ω(𝑥) =

∑𝑘
𝑑=1Ω𝑑𝑥

𝑑,

1Throughout the paper, symbols Ω(𝑥),Φ(𝑥) and 𝜔(𝑥), 𝜙(𝑥) are respec-
tively reserved for the node perspective and their corresponding edge perspec-
tive degree distributions, 𝜔(𝑥) = Ω′(𝑥)/Ω′(1), 𝜙(𝑥) = Φ′(𝑥)/Φ′(1)

where Ω𝑑 is the probability that degree 𝑑 is chosen. The
generation of a single LT encoding packet consists of two
simple steps: (a) Sample an output degree 𝑑 with probability
Ω𝑑, (b) Sample 𝑑 distinct input packets uniformly at random
from the information sequence and XOR them. These steps
can be performed as many times as necessary in order to
produce enough encoding packets for successful decoding.
The decoding of an LT code utilizes a BP algorithm on the
factor graph of the linear encoder 𝔽

𝑘
2 → 𝔽

𝑛
2 obtained by

restriction of the fountain code mapping to exactly those 𝑛
coordinates in the fountain encoding stream observed at the
receiver.

By applying the coupon collector’s problem, it can be con-
cluded that the expected number of edges 𝑀 on the decoding
graph needs to grow at least as 𝑂(𝑘 ln 𝑘) in order to ensure
that every input node in the decoding graph is connected to
at least one output node, which is a necessary condition for
successful decoding with any decoding algorithm. Luby [2]
showed the existence of an output degree distribution which
meets this lower bound of 𝑂(𝑘 ln 𝑘) edges, while providing a
high probability of successful BP decoding at rates just below
the channel capacity on erasure channels. Furthermore, the
probability of successful decoding can be made arbitrarily
close to 1 in the asymptotic lengths of the data source, i.e.,
when 𝑘 → ∞. Luby named such distribution the ideal soliton
distribution.

Definition 1: The ideal soliton distribution Ψ(𝑥) on 𝑁𝑘 is
given by:

Ψ𝑖 =

{
1/𝑘, 𝑖 = 1,

1
𝑖(𝑖−1) , 2 ≤ 𝑖 ≤ 𝑘. (1)

However, the ideal soliton distribution performs poorly in
practice for finite and practicable values of 𝑘. This is due to
its high sensitivity: the expected number of singly connected
output nodes is one at each stage of graph pruning, and
whenever it becomes zero prior to decoding completion,
decoding fails. Thus, Luby introduced its modification, the
robust soliton distribution, based on another distribution

𝑇𝑖 =

⎧⎨
⎩
𝑅/(𝑖𝑘), 1 ≤ 𝑖 ≤ 𝑘

𝑅 − 1,
(𝑅/𝑘) ln(𝑅/𝑘), 𝑖 = 𝑘

𝑅 ,
0, 𝑘

𝑅 + 1 ≤ 𝑖 ≤ 𝑘,
(2)

where 𝑅 = 𝑐
√
𝑘 ln 𝑘

𝛿 , and 𝑐 and 𝛿 are suitably chosen
parameters [2]. Now, after adding together distributions Ψ(𝑥)
and 𝑇 (𝑥) and renormalizing, we obtain the robust soliton
distribution with a characteristic spike at 𝑖 = 𝑘

𝑅 . Luby
showed that robust soliton LT codes have low encoding-
decoding complexity of the order 𝑂(𝑘 ln 𝑘

𝛿 ) XOR operations
for reconstruction probability of 1 − 𝛿 and a vanishing code
overhead, as 𝑘+𝑂(

√
𝑘 ln2 𝑘) encoding packets are sufficient

to decode an information sequence of length 𝑘.

C. Raptor codes

In [3], Shokrollahi introduced Raptor codes, a modification
of LT codes obtained by precoding the input message block
by a high rate sparse graph code, and by using a light output
degree distribution (capped at some maximum degree 𝑑𝑚𝑎𝑥

and essentially independent of 𝑘). Raptor codes were shown to
have excellent performance and linear encoding and decoding
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times, since the number of edges in the decoding graph
scales as 𝑂(𝑘). The benefit of smaller encoding and decoding
complexity lies within the relaxation of the condition that
all the input packets from the source need to be decoded at
the receiver end. Instead, only a certain fraction of the input
packets is required to be decoded and precoding provides
the additional redundancy within the set of input packets.
The idea is that the redundancy provided by a high rate
precode, e.g., an LDPC code, should be enough to finish
off the decoding procedure after a sufficiently large fraction
of the input packets. The precode can be optimized for a
projected fraction of undecoded packets, viewed as the erasure
probability of the channel.

D. Asymptotic analysis

The structure of the decoding graph, i.e., the choice of
degree distribution, determines the performance of fountain
codes. Unlike irregular LDPC codes [22] which have both
check node and variable node degree distributions as their
design parameters, the LT code ensemble depends on the
choice of the output (check) node degree distribution, whereas
the input (variable) node degree by construction follows a
binomial distribution on 𝛼𝑘 trials with probability 1/𝑘, where
𝛼 is the average input degree. The average input degree of a
light degree distribution stays bounded as 𝑘 → ∞. This can
be concluded from the equality 𝛼𝑘 = Ω′(1)(1 + 𝜀)𝑘, where
both sides are the number of edges 𝑀 on the decoding graph.
For large 𝑘 the input degree distribution can be approximated
by the Poisson distribution Λ(𝑥) = exp(𝛼(𝑥 − 1)), which
means that the asymptotic behaviour of an LT ensemble
with constant average degree distribution is captured by the
following version of the AND-OR lemma [23]:2

Lemma 1: The packet error rate of LT(𝑘,Ω(𝑥)) with an
average input degree 𝛼 which stays bounded as 𝑘 → ∞,
converges to 𝑦 = lim𝑙→∞ 𝑦𝑙, where 𝑦𝑙 is given by:

𝑦0 = 1, (3)

𝑦𝑙 = exp (−𝛼𝜔(1− 𝑦𝑙−1)) .

The following related result is due to Sanghavi [24] and it
is more general compared to Lemma 1 as it applies to all
LT ensembles. It was adopted from the study of hypergraph
collapse [25] and it determines a necessary and sufficient
condition for a sequence of ensembles LT(𝑘,Ω(𝑘)(𝑥)) to have
a vanishing error rate at code overhead 𝜀.

Lemma 2: Let 𝛿𝑘 be the error rate of LT(𝑘,Ω(𝑘)(𝑥)), where
degree distributions Ω(𝑘)(𝑥) converge pointwise to Ω(𝑥).
Then, at code overhead 𝜀, 𝛿𝑘 → 𝛿 as 𝑘 → ∞, where:

𝛿 = 1− inf{𝑥 ∈ [0, 1) : (1+ 𝜀)Ω′(𝑥)+ log(1−𝑥) < 0}, (4)

where such infimum exists, and 𝛿 = 0 otherwise.
When optimizing degree distributions for LT codes, Lemma
1 can be transformed into a linear programming routine.
Let us for the moment fix the average input node degree
𝛼 = Ω′(1)(1 + 𝜀) and minimize the code overhead such
that the desired error rate 𝛿 is achieved. The code overhead
can be expressed in terms of the edge perspective distribution

2packet error rate of the ensemble 𝐿𝑇 (𝑘,Ω(𝑥)) is the probability that an
input packet cannot be recovered by the decoder

𝜔(𝑥) as 1 + 𝜀 = 𝛼
∑𝑑𝑚𝑎𝑥

𝑑=1
𝜔𝑑

𝑑 . The set of linear programs
𝐿𝑃1(𝛿, 𝑑𝑚𝑎𝑥, 𝑁) is given by :

LP1 : min𝛼

𝑑𝑚𝑎𝑥∑
𝑑=1

𝜔𝑑
𝑑

(5)

𝛼

𝑑𝑚𝑎𝑥∑
𝑑=1

𝜔𝑑𝑦
𝑑−1
𝑖 ≥ − ln(1− 𝑦𝑖), 𝑖 ∈ 1, 2, . . . ,𝑚,

𝜔𝑑 ≥ 0, 𝑑 ∈ 1, 2, . . . , 𝑑𝑚𝑎𝑥,

where 0 = 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑁 = 1 − 𝛿 are 𝑁 equidistant
points on [0, 1 − 𝛿], 𝛿 is the desired error rate, and 𝑑𝑚𝑎𝑥

is the maximum degree of the degree distribution which is
being optimized. The node perspective distribution Ω(𝑥) can
be determined from 𝜔(𝑥) as Ω(𝑥) =

∫ 𝑥
0

𝜔(𝑧)𝑑𝑧
∫

1
0
𝜔(𝑧)𝑑𝑧

. Also, note
that the coefficient 𝛼 is in fact not a design parameter as we
can allow variables 𝜔𝑑 to sum to an undetermined 𝛼, instead
of 1. In that case, 𝜔(𝑥) is the unnormalized edge perspective
degree distribution, and in further, we will omit 𝛼 from the
linear programs.

III. SIDE INFORMATION SCENARIO: SYSTEM MODEL AND

ASSUMPTIONS

Slepian and Wolf [26] produced a remarkable result which
states that separate compression (Slepian-Wolf Coding - SWC)
of two correlated sources suffers no rate loss compared to the
case of joint compression. In this contribution, we study an
instance of asymmetric SWC, i.e., when one of the sources
is fully known at the decoder (decoder side information). In
this case, the range of achievable compression rates is given
by 𝑅 > 𝐻(𝑋 ∣𝑌 ) where 𝐻(𝑋 ∣𝑌 ) is the entropy of source 𝑋
conditional on the decoder side information 𝑌 . The authors
of [10] address a similar problem. However, [10] disregards
the non-systematic fountain code design, whereas our main
aim in this paper is to advocate non-systematic fountain codes
as a sub-optimal yet attractive solution to the problem of
asymmetric SWC. A related work in [11] considers using
fountain codes for symmetric SWC of two correlated sources,
but concentrates on the decoding algorithm rather than on the
code design. An alternative approach to constructing rateless
SWC schemes, which uses layered LDPC codes, rather than
fountain codes, is presented in [27].

The system model we are considering is presented in Fig.
1. The binary information source 𝑋 is correlated with decoder
side information 𝑌 𝑗 available at the receiver 𝑗, via some
“virtual” correlation channel 𝒞𝑗

𝑉 = 𝒞𝑉 , 𝑗 ∈ {1, 2, . . . , 𝑟},
which is identical for all the receivers. This means that
different receivers merely see different realizations of the same
random variable 𝑌 , which is the output of 𝒞𝑉 . The encoder
processes an information sequence x = (𝑥1, . . . , 𝑥𝑘) of length
𝑘 at a time, produces the potentially infinite binary stream
z = (𝑧1, 𝑧2, . . .), z = 𝑓𝑒𝑛𝑐(x), of the encoding symbols
and multicasts this stream. The receiver 𝑗 receives the stream
through an “actual” transmission channel 𝒞𝑗

𝐴, which can differ
across the set of receivers. The channel outputs are depicted as
the “noisy” stream w𝑗 = (𝑤𝑗

1, 𝑤
𝑗
2, . . .). The receiver 𝑗 picks

up any 𝑡𝑗 channel outputs w𝑗∗ = (𝑤𝑗
𝑖1
, 𝑤𝑗

𝑖2
, . . . , 𝑤𝑗

𝑖𝑡𝑗
) from

the incoming stream of symbols, aware of their coordinates
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Fig. 1. Fountain coded data multicast with side information.

within a stream, where 𝑡𝑗/𝑘 ≥ 𝐻(𝑋 ∣𝑌 )/𝐶𝑎𝑝(𝒞𝑗
𝐴), and

tunes out from the multicast. By taking advantage of the
side information sequence y𝑗 = (𝑦𝑗1, . . . , 𝑦

𝑗
𝑘) the receiver 𝑗

decodes: x̄𝑗 = 𝑓𝑑𝑒𝑐(w
𝑗∗,y𝑗). Our objective is to devise the

encoding strategy such that it is possible to have the rate 𝑡𝑗/𝑘
at the receiver 𝑗 close to the optimal value, i.e., the Slepian-
Wolf limit in the noisy channel case [28], 𝐻(𝑋 ∣𝑌 )/𝐶𝑎𝑝(𝒞𝑗

𝐴),
and to still allow for a high probability of successful decoding,
i.e., of x̄𝑗 = x, 𝑗 ∈ {1, 2, . . . , 𝑟}.

In this contribution, we focus on two special cases of the
above system model where 𝒞𝑉 is either a binary erasure
channel (BEC) with erasure probability 𝑝 or a binary input
additive white Gaussian noise channel (BIAWGNC) with noise
variance 𝜎2𝑉 . The following example motivates the study of
rateless code solutions when the virtual channel is a BEC.

Example 1: A source node contains a large number 𝑘 of
data packets to be disseminated to a large number of receivers
over lossy links. However, each receiver already knows a
subset of the data packets, i.e., approximately (1−𝑝)𝑘 packets
for 0 < 𝑝 < 1. Different receivers can possibly have
knowledge of different packets. This could have arisen, e.g.,
as a result of transmission from other sources. Now, since the
transmitter has no knowledge of which packets are available
at which receivers, it must encode over all its packets for
multicast transmission.
Ideally, a rateless code is the solution sought after for the
setting outlined in the example, as it would be able to naturally
adapt its rate to different or variable packet loss rates across
the set of receivers. Alternatively, some kind of Hybrid-
ARQ scheme could be employed, but due to a large number
of receivers, feedback resources may be severely limited
and this solution may lead to feedback implosion3. Clearly,
each receiver must receive at least 𝑝𝑘 encoding packets to
successfully recover the unknown part of the message. But
how close can we get to this lower bound in the multicast
transmission? We will study this problem in detail in Sections
IV and V.

3Feedback implosion is a common problem in broadcasting arising as
different receivers may request retransmission of different data packets, which
in turn may lead to the multiple transmission of all data packets.

1x 2x 3x kx 1+kz 2+kz 3+kz… …

k systematic symbols

encoding symbols1y 2y 3y ky

1x 2x 3x kx… …

precode parity 
symbols

k intermediate 
symbols

…

precode parity 
checks

Fig. 2. Systematic Raptor for coding with partial information.

Note that the problem of coding with partial information
is essentially equivalent to the problem of simultaneous dis-
semination of independent messages to 𝑟 receivers with the
same bitstream, provided that each receiver already has access
to all messages intended to other receivers. Namely, if each
receiver 𝑗 ∈ {1, 2, . . . , 𝑟} requests message 𝑎𝑗 but already
knows messages 𝑎𝑖, 𝑖 ∕= 𝑗, then it is decoding the source
{𝑎𝑖}𝑟𝑖=1 with partial side information {𝑎𝑖}𝑖∕=𝑗 . Thus, it may
be possible that practical solutions to this problem can find
applications in lower complexity network coding proposals,
such as [29].

IV. SYSTEMATIC RAPTOR CODING WITH DECODER SIDE

INFORMATION

Standard fountain codes are non-systematic by their con-
struction as output symbols are equally important random
linear functions on the set of input symbols. However, it is
possible to design a systematic fountain code at the expense
of the increase of encoding/decoding complexity. Namely, it
is necessary to explicitly calculate the vector of intermediate
symbols x̄, from the input vector x, such that the input vector
will be replicated in the fountain encoding stream. This is
performed by solving the equation

G
{1:𝑘}
𝐿𝑇 x̄T = xT, (6)

where G
{1:𝑘}
𝐿𝑇 is a predetermined invertible 𝑘 × 𝑘 matrix

used as the first 𝑘 rows of the LT generator matrix. Making
Raptor codes systematic also allows some interesting ways of
realizing the encoding and decoding process. Namely, both
processes perform two basic operations [30]: code constraints
processing, which solves a set of constraint equations (6) (at
the encoder) or decodes the intermediate symbols from the
observed encoding symbols (at the decoder), and LT encoding,
which generates the actual output stream (at the encoder) or
calculates the input vector based on the intermediate symbols
(at the decoder). The computation of the intermediate symbols
with Gaussian elimination is generally quadratic in 𝑘, unless
a special structure of matrix G

{1:𝑘}
𝐿𝑇 is imposed such that the

linear system (6) can be solved with the direct elimination of
one unknown at a time.
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The possibility of a systematic fountain code seems as
a natural solution for the problem of coding with partial
information. Namely, our setting where both 𝒞𝑉 and 𝒞𝐴 are
erasure channels can be reduced to the channel coding problem
of reliable transmission over a pair of binary erasure channels,
under constraint that the transmission of systematic symbols
𝑋𝑘 through 𝒞𝑉 precedes the transmission of non-systematic
symbols, and results in the decoder side information 𝑌 𝑘.
Hence, a universal (applicable to any erasure channel) sys-
tematic fountain code would be sufficient to optimally solve
the proposed problem. The application of systematic Raptor
design in this setting is demonstrated in Fig. 2. The encoder
needs to calculate intermediate symbols x̄ for each information
sequence via Gaussian elimination, and then proceed with the
encoding but from the (𝑘+1)-th row of the generator matrix
- as the strategy consists of sending only non-systematic
encoding symbols. The decoder directly embeds the decoder
side information y in the decoding graph. The erased symbols
in y are simply ignored, whereas nonerased symbols are used
as the output corresponding to the systematic symbols, i.e., the
first 𝑘 symbols of the fountain encoding stream. Upon recov-
ering the intermediate symbols, an additional encoding step
is performed in order to calculate the (unknown part of the)
actual information sequence x by multiplying intermediate
symbols x̄ with the first 𝑘 rows of the LT generator matrix. The
universality of (systematic) Raptor codes for erasure channels
implies that application of the systematic Raptor codes to the
proposed problem will bring a nearly optimal design.

However, our primary aim in this contribution is to analyse
and improve the performance of simpler, i.e., non-systematic
LT and Raptor codes when applied to the proposed problem of
multicasting with decoder side information. The advantage of
the non-systematic fountain codes is the simplicity of design
and the lower computational complexity. The reduction in
computational complexity arises for two principal reasons: (a)
systematic Raptor codes require preprocessing to determine
an invertible matrix G

{1:𝑘}
𝐿𝑇 , solving the system of equations

(6) for each block of data, as well as the additional step when
decoding: multiplication of intermediate symbols by G

{1:𝑘}
𝐿𝑇 to

recover the actual information sequence; (b) decoding of non-
systematic fountain codes in multicasting with decoder side
information is performed on a significantly smaller decoding
graph - if we assume that the number of nodes arising from
precoding is negligible, an ideal systematic code performs
decoding on a graph with at least 𝑘(1 + 𝐻(𝑋/𝑌 )

𝐶𝑎𝑝(𝒞𝐴) ) check
nodes, whereas an ideal non-systematic code requires slightly
more than 𝑘𝐻(𝑋/𝑌 )

𝐶𝑎𝑝(𝒞𝐴) check nodes. As the decoding time is
proportional to the size of the decoding graph, a severalfold
decrease in computational complexity is possible.

Example 2: Let 𝒞𝑉 be a BEC with erasure probability
𝑝 = 0.1 and let the transmission channel be noiseless. Ideal
systematic fountain code requires 1.1𝑘 check nodes, whereas
ideal non-systematic fountain code requires 0.1𝑘 check nodes.

V. NON-SYSTEMATIC FOUNTAIN CODING WITH PARTIAL

INFORMATION

We have seen that low computational complexity motivates
us to study a non-systematic fountain code design for coding

with partial information. However, it is intuitively clear that
non-systematic fountain codes designed for standard channel
coding problems will be rather inefficient for coding with
partial information, since classical output symbol degree distri-
butions will be too sparse to accommodate useful information
within output symbols. Namely, since with probability (1−𝑝)
an arbitrary input symbol is already known at the decoder, an
arbitrary output symbol with degree 𝑑 is completely useless to
the decoder with the probability (1−𝑝)𝑑, which is prohibitively
large for the smaller values of 𝑑. Thus, it is necessary to
modify the degree distributions Ω(𝑥) and shift them towards
higher degrees, while sustaining their compliance with the BP
graph pruning algorithm.

Assuming that the transmission of encoding symbols also
occurs over a BEC of an undetermined erasure probability, the
encoder employs a standard LT code with an output degree
distribution Φ(𝑥) to generate as many encoding packets as
necessary. The decoder picks up 𝑡 ≥ 𝑝𝑘 correctly received
packets, where 𝑝 is the channel erasure probability. Note
that 𝑝𝑘 packets correspond to the optimal compression rate,
since 𝐻(𝑋 ∣𝑌 ) = 𝑝. The receiver forms the decoding graph
and removes the input nodes corresponding to the packets
available from the side information, appropriately updating the
output nodes. A BP decoding for the erasure channel, i.e., a
graph pruning procedure, can then be performed. However,
once known input nodes have been removed, the output
degree distribution is changed, and exactly this distribution
determines the performance of the scheme. Nonetheless, since
the source packets are chosen uniformly after the degree of
an output node has been selected, one can relate the “starting”
degree distribution Φ(𝑥) to the degree distribution Ω(𝑥) after
removal of the known input nodes from the decoding graph.

Lemma 3: Let Φ(𝑥) =
∑𝑘

𝑑=1Φ𝑑𝑥
𝑑 and Ω(𝑥) =∑𝑘

𝑑=1Ω𝑑𝑥
𝑑 be respectively the generating polynomials of

the output degree distribution used at the encoder (incoming
degree distribution) and the output degree distribution after
removal of the known source nodes from the decoding graph
(resulting degree distribution), then:

Ω(𝑥) = Φ(1− 𝑝+ 𝑝𝑥). (7)

Proof: The probability that an arbitrary output node has
degree 𝑖 after removal of the known source nodes conditioned
on its degree before removal being 𝑗 ≥ 𝑖 is given by

(
𝑗
𝑖

)
(1−

𝑝)𝑗−𝑖𝑝𝑖. Thus, the relation between the distributions Φ and Ω
is given by

Ω𝑖 =
𝑘∑

𝑗=𝑖

Φ𝑗𝑝
𝑖(1− 𝑝)𝑗−𝑖, 𝑖 = 1, . . . , 𝑘, (8)

which is equivalent to (7).
In [19], the authors independently studied an equivalent

problem. They attempted the modification of the LT degree
distribution design for erasure channels under the assumption
that a fixed number of input packets is already available
at the receiver side. The code design was aimed at data
synchronization scenarios [31], where each receiver typically
has a possibly outdated version of some common database,
and needs to recover only a small unknown portion of a large
set of data. The authors introduced the shifted robust soliton
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distribution, with superior performance over the standard foun-
tain degree distributions, such as robust soliton distributions.
The rationale behind the shifted robust soliton distribution
is simple. If the original information sequence x contains 𝑘
packets and 𝜏 of those packets are known at the decoder, each
output node of the decoding graph will have (𝜏/𝑘)-fraction of
edges removed prior to executing the BP decoding algorithm.
For cases where the number of known input packets is not
fixed, but is rather a random variable with a known probability
mass function, the authors introduce a distributionally shifted
robust soliton distribution.

Definition 2: Let 𝑁𝑙, 𝑙 ≥ 1, denote the set {1, . . . , 𝑙},
let Ω𝑘,𝑐,𝛿(𝑥) =

∑𝑘
𝑑=1Ω

𝑘,𝑐,𝛿
𝑑 𝑥𝑑 denote a robust soliton

distribution on 𝑁𝑘 with parameters 𝑐 and 𝛿 and let ( )ℤ
denote rounding to the nearest integer.
(a) The shifted robust soliton distribution (SRSD)
Φ𝑘,𝑐,𝛿,𝜏 (𝑥) =

∑𝑘
𝑑=1Φ

𝑘,𝑐,𝛿,𝜏
𝑑 𝑥𝑑, with parameters 𝑐 and

𝛿 on set 𝑁𝑘 shifted by a nonnegative integer 𝜏 < 𝑘, is
∀𝑗 ∈ 𝑁𝑘 given by:

Φ𝑘,𝑐,𝛿,𝜏
𝑗 =

{
Ω𝑘−𝜏,𝑐,𝛿
𝑖 ∃𝑖 ∈ 𝑁𝑘−𝜏 : ( 𝑖

1−𝜏/𝑘 )ℤ = 𝑗,

0 otherwise.
(9)

(b) The distributionally shifted robust soliton distribution
(DSRSD) Θ𝑘,𝑐,𝛿,𝜋(𝑥) =

∑𝑘
𝑑=1Θ

𝑘,𝑐,𝛿,𝜋
𝑑 𝑥𝑑 with parameters 𝑐

and 𝛿 on set 𝑁𝑘 shifted by a distribution 𝜋(𝑥) =
∑𝑘

𝜏=0 𝜋𝜏𝑥
𝜏

on {0} ∪𝑁𝑘, is ∀𝑗 ∈ 𝑁𝑘 given by:

Θ𝑘,𝑐,𝛿,𝜋
𝑗 =

𝑘−1∑
𝜏=0

𝜋𝜏 ⋅ Φ𝑘,𝑐,𝛿,𝜏
𝑗 . (10)

A comparison in Fig. 3 depicts probability mass functions of
the robust soliton distribution for 𝑘 = 1000, 𝑐 = 0.02 and
𝛿 = 0.5; SRSD with the same parameters for the case when
𝜏 = 500 input packets is already known at the decoder; and
DSRSD where the number of packets known at the decoder
behaves as a binomial random variable on 1000 trials with
success probability 0.5, i.e., 𝜋(𝑥) = (0.5 + 0.5𝑥)1000.

The simplicity of the design of SRSD and DSRSD makes
them appealing for applications where receivers have access
to partial information about the source. However, in the
remainder of this section, we will provide a more accurate
degree distribution design for such applications. We will start
by proving the failure of SRSD and DSRSD to reach Slepian-
Wolf limits, as 𝑘 → ∞.

A. Penalties of shifted robust soliton distributions

For the sake of simplicity, we will assume that 𝑘/𝜏 = 𝑞 ∈
ℕ. In that case, both SRSD shifted by 𝜏 and DSRSD where 𝜋
is a binomial distribution with mean 𝜏 converge pointwise to
the limiting incoming distribution, as 𝑘 → ∞, which is given
by:

Φ(𝑥) =
∑
𝑖≥2

𝑥𝑞𝑖

𝑖(𝑖− 1) . (11)

Note that Φ′(𝑥) = −𝑞𝑥𝑞−1 log(1−𝑥𝑞). According to Lemma
3 the limiting resulting distribution is then Ω(𝑥) = Φ(𝑥+𝑞−1

𝑞 ).
Now we can apply the vanishing error rate condition (4) at

code overhead 𝜀 with respect to the Slepian-Wolf limit, i.e.,
𝑛 = (1+𝜀)𝑝𝑘 encoding packets are observed at the receiver. If
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Fig. 3. Comparison of distributions RSD, SRSD and DSRSD.

SRSD and DSRSD should approach Slepian-Wolf limit, ∀𝑥 ∈
[0, 1), ∀𝜀 > 0,

−(1+𝜀)(𝑥+ 𝑞 − 1
𝑞

)𝑞−1 log(1−(𝑥+ 𝑞 − 1
𝑞

)𝑞)+log(1−𝑥) ≥ 0.

(12)
But this cannot be satisfied whenever 𝑞 > 0.

Example 3: Let 𝑞 = 2. Eq. (12) is equivalent to

1− 𝑥 ≥ (1− (𝑥+ 1
2

)2)(1+𝜀) 𝑥+1
2 . (13)

If the condition is to be satisfied ∀𝑥 ∈ [0, 1), i.e., the error
rate is vanishing, we require 𝜀 ≥ 0.1227, whereas as 𝜀 → 0,
the error rate is bounded with 𝛿 ≥ 0.6995.

Thus, SRSD and DSRSD typically exhibit an "all-or-
nothing" decoding behavior. The error rate vanishes after
a large threshold code overhead, whereas for smaller code
overheads, error rate generally stays large. As we will see,
in the design of Raptor-like codes for the partial information
setting, better performing distributions can be designed.

B. Optimization of the incoming distribution

Note that, from Lemma 3 we also have 𝜔(𝑥) = 𝜙(1 − 𝑝+
𝑝𝑥), where 𝜙(𝑥) = Φ′(𝑥)

Φ′(1) is the incoming edge perspective
output degree distribution. From here, we can obtain a sim-
ple AND-OR tree analysis of the performance of incoming
distribution Φ, captured by the following corollary of Lemma
3:

Corollary 1: The packet error rate of an LT(𝑘,Φ(𝑥)) with
average input degree 𝛼 for coding with partial information
across the input packets unknown at the decoder prior to
transmission, as 𝑘 → ∞, is given by 𝑦 = lim𝑙→∞ 𝑦𝑙, where
𝑦𝑙 is given by:

𝑦0 = 1, (14)

𝑦𝑙 = exp (−𝛼𝜙(1 − 𝑝𝑦𝑙−1)) .

The packet error rate across the entire information sequence
is given by 𝑦 = 𝑝 ⋅ 𝑦.
If an LT code with output degree distribution Φ(𝑥) should
provide for the decoding of (1− 𝛿)𝑡 unknown source packets,
when 𝑘 → ∞, where 𝑡 is the number of unknown source
packets, we need to have exp(−𝛼𝜙(1− 𝑝𝑦)) < 𝑦, ∀𝑦 ∈ [𝛿, 1].



SEJDINOVIĆ et al.: FOUNTAIN CODE DESIGN FOR DATA MULTICAST WITH SIDE INFORMATION 5161

−0.1 −0.05 0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

overhead ε

pa
ck

et
 e

rr
or

 r
at

e

p=0.5

p=0.4

p=0.2
p=0.3

δ=0.01

Fig. 4. Asymptotic (full lines) and simulated (dashed lines) packet error rates
of degree distributions with desired error rate 𝛿 = 0.01 at the minimized code
overhead for correlation BEC of probability 𝑝 = 0.2, 0.3, 0.4, 0.5. The block
length used in simulations was 𝑘 = 6 ⋅ 104 .

By transforming the above condition in terms of a function
linear in variables 𝜙𝑑 we obtain the set 𝐿𝑃2(𝑝, 𝛿, 𝑑𝑚𝑎𝑥, 𝑁) of
linear programs:

LP2 : min
1

𝑝

𝑑𝑚𝑎𝑥∑
𝑑=1

𝜙𝑑
𝑑

𝜙(𝑦𝑖) ≥ − ln(1− 𝑦𝑖
𝑝

), 𝑖 ∈ 1, 2, . . . , 𝑁 (15)

𝜙𝑑 ≥ 0, 𝑑 ∈ 1, 2, . . . , 𝑑𝑚𝑎𝑥.

where 1 − 𝑝 = 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑁 = 1 − 𝛿𝑝 are equidistant
points on [1−𝑝, 1−𝛿𝑝]. Fig. 4 shows the asymptotic and sim-
ulated finite length packet error rates for degree distributions
obtained by linear program 𝐿𝑃2 for 𝑑𝑚𝑎𝑥 = 100, 𝛿 = 0.01,
and 𝑝 ∈ {0.2, 0.3, 0.4, 0.5}, with grid 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑁 of
granularity 0.001. The block length used in simulations was
𝑘 = 6 ⋅ 104.

Unfortunately, we have discovered that code design with
linear programs (15) comes with a code overhead penalty: for
fixed 𝛿, 𝜀 with respect to Slepian-Wolf limit stays bounded
above some penalty value 𝜀∗ > 0 as the maximum degree
𝑑𝑚𝑎𝑥 → ∞. Namely, a simple modification of Lemma 2 from
[24] yields the following result:

Proposition 1: Let 𝑚 ∈ ℕ be such that 𝛿 ≥ 1
𝑝(𝑚+1) . There

exists a solution 𝜙∗(𝑥) of 𝐿𝑃2(𝑝, 𝛿, 𝑑𝑚𝑎𝑥, 𝑁), 𝑑𝑚𝑎𝑥 > 𝑚,
with 𝜙∗𝑗 = 0 for 𝑗 ≥ 𝑚+ 1,
Now we can look at the duals of the undiscretized version of
𝐿𝑃2(𝑝, 𝛿,𝑚,𝑁):

max
𝑝𝑍

𝔼[− ln 1− 𝑍
𝑝

] (16)

𝔼[𝑍𝑑−1] ≤ 1

𝑝𝑑
, 𝑑 ∈ 1, 2, . . . ,𝑚

𝑍 ∈ [1− 𝑝, 1− 𝛿𝑝],
The dual program enables us to lower-bound the code over-
head penalty, as for any feasible solution 𝑍 of the dual and,
the value of the objective function of the dual 𝜓𝑑𝑢𝑎𝑙 is less
than the optimal value of the objective function of the primal
𝜓∗
𝑝𝑟𝑖𝑚𝑎𝑙 = 1 + 𝜀∗. We can obtain a feasible solution of

the dual by looking at the discrete distributions with finite
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Fig. 5. Code overhead penalty in coding with partial information.
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Fig. 6. Comparison of asymptotic and simulated performance of light SRSD,
light DSRSD (𝑑𝑚𝑎𝑥 = 100) and degree distribution obtained by linear
program 𝐿𝑃2(𝑝 = 0.5, 𝛿 = 0.004, 𝑑𝑚𝑎𝑥 = 100, 𝑁 = 500).

support, e.g., on a uniform grid. The lower bounds obtained
this way, for 𝛿 = 0.01 and uniform grid of granularity 0.001
are shown in Fig. 5 and compared with penalties arising from
SRSD and DSRSD, calculated as in Example 3. Note that for
the case of 𝑝 = 1, or the classical channel coding problem,
there is no penalty - namely, an ensemble of LT codes whose
degree distributions converge pointwise to a limiting soliton
distribution [24] would achieve the Shannon limit, whereas
there is a clear gap with 𝑝 < 1. Our results in Fig. 4
demonstrate that these lower bounds are sharp.

We have seen that coding schemes with linear encoding-
decoding complexity employ light degree distributions, capped
at some maximum degree. Our results indicate that light SRSD
and DSRSD distributions perform poorly. In Fig. 6, we present
the asymptotic and finite length (𝑘 = 104) performance of the
custom degree distribution Ω𝑜𝑝𝑡(𝑥) = 0.4816𝑥

5+0.3916𝑥6+
0.0792𝑥29 + 0.005130 + 0.0425𝑥100 as contrasted to light
SRSD and DSRSD of the same maximum degree 𝑑𝑚𝑎𝑥 = 100.
Distribution Ω𝑜𝑝𝑡(𝑥) was chosen as to mimic the error floor of
SRSD and DSRSD but at the minimized code overhead. Note
that although DSRSD is actually based on the assumption that
partial information is an output of a BEC, it actually performs
worse than SRSD in this setting, and we attribute this result
to a small maximum degree 𝑑𝑚𝑎𝑥 = 100.

Thus, our study of non-systematic fountain codes for coding
with partial information has led to the following conclusions:
(a) light SRSD and DSRSD suffer significantly larger penalties
on code overhead as 𝑘 → ∞, (b) SRSD and DSRSD perform
poorly in comparison to optimized degree distributions which
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are more applicable for linear complexity and Raptor-like
schemes.

C. Raptor-like scheme

By concatenating an LT code with a custom distribution
derived by the optimization procedure as described above to
a very high-rate hybrid LDPC-Half precode, constructed as in
[17], we have implemented a non-systematic Raptor solution
to the problem of coding with partial information. The length
of the information sequence was set to 𝑘 = 4 ⋅ 104 and the
correlation channel erasure probability was 𝑝 = 0.3. Note that
the precoding somewhat changes the optimization procedure
since equation (7) now reads

Ω(𝑥) = Φ(𝑠(1 − 𝑝) + (1 − 𝑠+ 𝑠𝑝)𝑥), (17)

where 𝑠 is the precode rate. Fig. 7 depicts the histogram of the
numbers of received packets necessary for succesful decoding
for 500 transmission trials. On average, 13750 packets were
required for full recovery, which is about 34.4% of the
length of the information sequence, compared to the optimal
30%, i.e., 12000 packets. This demonstrates that our code
design, albeit sub-optimal, can be utilized in a practical robust
low complexity data multicast coding scheme with partial
information.

VI. SOFT-DECISION DECODING AND NOISY

CORRELATION CHANNELS

Let us assume that the binary information source 𝑋 over
the alphabet {−1, 1} and the soft side information 𝑌 are
correlated via 𝑌 = 𝑋 + 𝑁 , where 𝑁 is a Gaussian random
variable of zero mean and variance 𝜎2𝑉 . This means that
𝒞𝑉 is a binary input additive white Gaussian noise channel
(BIAWGNC) with noise variance 𝜎2𝑉 . In this case, 𝐻(𝑋 ∣𝑌 ) =
1 − 𝐶𝑎𝑝(𝐵𝐼𝐴𝑊𝐺𝑁𝜎𝑉 ), where the capacity of BIAWGNC
[22] is given by

𝐶𝑎𝑝(BIAWGN𝜎) = (18)

1− 1

2
√
𝜋𝑚

∫∞
−∞ log2(1 + 𝑒

−𝑥)𝑒−
(𝑥−𝑚)2

4𝑚 𝑑𝑥,

where 𝑚 = 2/𝜎2.
Fountain codes on general noisy binary input memoryless

symmetric (BIMS) channels can be decoded by a BP sum-
product algorithm [7], [21]. Every output node 𝑓 , correspond-
ing to the encoding symbol, has a corresponding channel log-
likelihood ratio (LLR) 𝐿(𝑧𝑓), derived based on the channel
output 𝑧𝑓 . In addition, an input node 𝑣 may be associated to
the side information 𝑦𝑣, if present. This side information can
be embedded directly into the sum-product rules as intrinsic
soft information, i.e., log-likelihood ratio 𝐿(𝑦𝑣) based on the
output of the correlation channel. The sum-product rules are
given by:

𝑚
(𝑖)
𝑣,𝑓 =

{
𝐿(𝑦𝑣), 𝑖 = 0

𝐿(𝑦𝑣) +
∑

𝑔 ∕=𝑓 𝜇
(𝑖−1)
𝑔,𝑣 , 𝑖 > 0

(19)

tanh(
𝜇
(𝑖)
𝑓,𝑣

2
) = tanh(

𝐿(𝑧𝑓 )

2
)
∏
𝑢∕=𝑣

tanh(
𝑚

(𝑖)
𝑢,𝑓

2
), (20)
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Fig. 7. The histogram of the number of successful recoveries in non-
systematic Raptor coding with partial information.

where 𝜇(𝑖)𝑓,𝑣 (𝑚(𝑖)
𝑣,𝑓 ) are the messages passed from the output

node 𝑓 to the input node 𝑣 (from the input node 𝑣 to the
output node 𝑓 ) at the 𝑖-th iteration. In Raptor codes, after a
fixed number of iterations 𝑙, the posterior LLR of the input
node 𝑣 is given by

𝐿̂(𝑦𝑣) = 𝐿(𝑦𝑣) +
∑
𝑔

𝜇(𝑙)𝑔,𝑣. (21)

and can be used as a prior value in additional BP iterations on
the static decoding graph of the Raptor code, i.e., the decoding
graph of the precode. This additional step has a role of re-
moving any error floor arising from light degree distributions.
In [13], a similar design was employed for the joint-source
channel coding scenario using non-systematic Raptor codes
with a standard Soliton-like output degree distribution. In the
rest of this section, we will show how to improve the design
of output degree distributions in this setting.

A. Using a systematic Raptor design

Systematic Raptor codes can be applied in the noisy side
information scenario similarly as described in Section IV. It
has recently come to our attention that the problem of the side
information scenario with the correlation channel modelled by
a binary symmetric channel (BSC) was independently studied
in [10]. The authors employed the systematic Raptor codes
and modified the message passing strategy at the decoder to
take into account the source 𝑌 perfectly known at the decoder
as the noisy version of source 𝑋 and transmit only the non-
systematic encoding Raptor symbols, which is a soft-decision
version of the systematic Raptor employment described in sec-
tion 4. However, in addition to the conclusion that systematic
Raptor codes can be used in this setting, it was also argued
in [10] that non-systematic Raptor codes are not applicable to
the problem. However, the authors of [13] consider a similar
setting but use standard non-systematic Raptor codes enhanced
by a more frequent selection of parity symbols in formation
of the encoding symbols. We here show that, by carefully
designing their output degree distributions, non-systematic
Raptor codes may yield promising performance for coding
with noisy side information as well.
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B. Density evolution and semi-Gaussian approximation

The BP decoder of LDPC codes is extensively analysed with
the set of tools collectively referred to as density evolution
(DE) [22]. The density evolution calculates density functions
of messages passed during the BP algorithm. This approach
is significantly simplified by Gaussian approximation [32].
Gaussian approximation models all the messages passed dur-
ing the decoding algorithm as consistent Gaussian variables,
i.e., Gaussian variables whose variance is equal to twice their
mean. However, a more accurate analysis is possible with
semi-Gaussian approximation [33], which was used in the
fountain code design for noisy channels [7]. We will also adopt
this approach in fountain coding with noisy side information.

The messages passed from the variable nodes are obtained
as sums of i.i.d. random variables of finite mean and variance
and behave as Gaussian random variables on large scale.
However, as argued in [33], the messages passed from the
check nodes (especially those with a small degree) exhibit
a rather different behaviour. Hence, we will assume that
the input→output messages 𝑀 (𝑖)

→ ∼ 𝒩 (𝜈𝑖, 2𝜈𝑖), 𝑖 ≥ 0 are
consistent Gaussian variables and explicitly calculate the mean
of the output→input messages. The key part of the analysis is
the function 𝜂 which describes how the mean of input→output
messages changes in a single iteration of an LT decoder, i.e.,
𝜈𝑖+1 = 𝜂(𝜈𝑖), 𝑖 ≥ 0. By taking expectations in (19) and (20),
we obtain:

𝜂(𝜈) = 𝔼𝐿(𝑌 ) + 𝛼

𝑑𝑚𝑎𝑥∑
𝑑=1

𝜔𝑑𝜉(𝜈, 𝑑, 𝑍). (22)

where 𝜉(𝜈, 𝑑, 𝑍) is the mean of the output→input messages
passed from an output node of degree 𝑑 [7], and is given by:

𝜉(𝜈, 𝑑, 𝑍) = 2𝔼

⎡
⎣atanh

⎛
⎝tanh(𝑍

2

) 𝑑−1∏
𝑗=1

tanh

(
𝑀𝑗

2

)⎞⎠
⎤
⎦ .
(23)

Here, 𝑍 is the random variable describing the LLR of the
transmission channel and 𝑀𝑗 ∼ 𝒩 (𝜈, 2𝜈), 𝑗 ∈ {1, . . . , 𝑑−1},
are i.i.d. random variables. As suggested in [7], 𝜉(𝜈, 𝑑, 𝑍) can
be approximated by an empirical mean.

The condition that the BP decoder converges to an all-
zero codeword translates to 𝜂(𝜈) > 𝜈 on 𝜈 ≥ 𝔼𝐿(𝑌 ). In
the fountain code design for channel coding, the starting
mean of the input→output messages is zero, and thus a
corresponding condition becomes too restrictive. This explains
poor performance of standard fountain code degree distri-
butions for coding with noisy side information, as reported
in [10]. However, incorporating the condition 𝜂(𝜈) > 𝜈 on
𝜈 ∈ [𝔼𝐿(𝑌 ), 𝜈𝑚𝑎𝑥], for some predetermined cut-off LLR
𝜈𝑚𝑎𝑥, into our code design problem produces a robust way
to design non-systematic fountain codes for this problem.

Example 4: Assume that 𝒞𝑉 is a BIAWGNC with noise
variance 𝜎2𝑉 and 𝒞𝐴 is a BIAWGNC with noise variance 𝜎2𝐴.
We obtain the following set 𝐿𝑃3(𝜎2𝑉 , 𝜎

2
𝐴, 𝜈𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥, 𝑁) of

linear programs:

LP3 : min
𝐶𝑎𝑝(𝒞𝐴)

1− 𝐶𝑎𝑝(𝒞𝑉 )
𝑑𝑚𝑎𝑥∑
𝑑=1

𝜔𝑑
𝑑

𝑑𝑚𝑎𝑥∑
𝑑=1

𝜔𝑑𝜉(𝜈𝑖, 𝑑, 𝑍) ≥ 𝜈𝑖 − 2/𝜎2𝑉 , 𝑖 ∈ 1, 2, . . . , 𝑁,

𝜔𝑑 ≥ 0, 𝑑 ∈ 1, 2, . . . , 𝑑𝑚𝑎𝑥, (24)

where 2/𝜎2𝑉 = 𝜈1 < 𝜈2 < ⋅ ⋅ ⋅ < 𝜈𝑁 = 𝜈𝑚𝑎𝑥 are equidistant
points on [2/𝜎2𝑉 , 𝜈𝑚𝑎𝑥].

C. Gaussian transmission with partial information

The optimization of degree distributions in the case when
𝒞𝑉 is a BEC of probability 𝑝 and 𝒞𝐴 is a BIAWGNC of noise
variance 𝜎2𝑉 follows from similar ideas. It is sufficient to insert
the relationship

𝜔𝑑 =

𝑑𝑚𝑎𝑥∑
𝑖=𝑑

(
𝑖

𝑑

)
(1− 𝑝)𝑖−𝑑𝑝𝑑𝜙𝑑, (25)

into condition (22). In this case, the input→output means
start at 𝜈 = 0 as we track the means at the portion of data
unknown apriori, and this portion of data contains no soft
information: 𝐿(𝑌 ) = 0. The new design constraints are given
by:

𝑑𝑚𝑎𝑥∑
𝑖=1

( 𝑖∑
𝑑=1

(
𝑖

𝑑

)
(1− 𝑝)𝑖−𝑑𝑝𝑑𝜉(𝜈, 𝑑, 𝑍)

)
𝜙𝑖 > 𝜈, 𝜈 ∈ [0, 𝜈𝑚𝑎𝑥],

(26)
and can be easily transformed into an appropriate linear

program.

D. Simulation results

We compared three different methods for coding with
Gaussian side information on information sequence of length
𝑘 = 3140: a systematic Raptor code, a standard non-
systematic Raptor code with degree distribution from [3], [10]
and the non-systematic Raptor code with degree distribution
Ω(𝑥) = 0.0954𝑥5 + 0.1192𝑥6 + 0.1121𝑥7 + 0.12938𝑥8 +
0.1054𝑥9 + 0.0807𝑥10 + 0.1109𝑥11 + 0.2470𝑥100, obtained
from LP in (24). The results are presented in Fig. 8. The
horizontal axis represents the signal-to-noise ratio (SNR) of
the correlation channel, which is related with the channel
noise variance by SNR = 10 log10

1
𝜎2 . The vertical axis

represents the average joint source-channel code rate necessary
for succesful decoding, i.e., 𝑡/𝑘, where 𝑡 is the average number
of received encoding symbols at the decoder. The transmission
channel was a BIAWGN channel with SNR = 3 dB. The
assumed SNR of the virtual channel during this optimization
was also set to 3 dB. The systematic Raptor is clearly superior
to non-systematic schemes in this setting. However, the non-
systematic Raptor code with optimized Ω(𝑥) does come close
to the performance of the systematic Raptor code scheme
at the higher region of virtual SNR. This demonstrates that
non-systematic Raptor codes with carefully designed degree
distributions may nonetheless be an attractive solution for
coding with noisy side information. Note, however, that in
the lower region of virtual SNR our code design constraints
become insufficient to provide low overheads as starting means
of the input→output messages are lower than anticipated.
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Fig. 8. The comparison of Raptor codes for coding with noisy correlation.

VII. CONCLUSIONS

In this paper, the design of fountain codes for muticast
transmission with side information at the receivers has been
studied. We have assumed that side information is modelled as
the correlation channel output when the original information
sequence is its input. We have investigated the instances of
problem with correlation channel modelled either as a BEC
or as a BIAWGNC. While in both cases a solution based
on systematic Raptor codes seems the most advantageous, its
higher complexity and the need for preprocessing motivated us
to study the performance of the non-systematic fountain codes
when applied to these multicast problems. We have shown
how to improve their performance by optimizing the output
degree distribution for a particular correlation channel model.
The results in our contribution indicate that fountain codes are
a natural practical coding scheme for multicast transmission
with side information and that their design may be tuned
to perform close to information theoretic bounds with low
computational cost.
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[1] D. Sejdinović, R. Piechocki, A. Doufexi, and M. Ismail, “Fountain cod-
ing with decoder side information," in Proc. IEEE Int. Conf. Commun.
(ICC), Beijing, China, May 2008.

[2] M. Luby, “LT codes," in Proc. IEEE Symp. Foundations Computer
Science (FOCS), Vancouver, Canada, Nov. 2002.

[3] A. Shokrollahi, “Raptor codes," IEEE Trans. Inform. Theory, vol. 52,
no. 6, pp. 2551-2567, June 2006.

[4] R. Palanki and J. Yedidia, “Rateless codes on noisy channels," in Proc.
IEEE Int. Symp. Inform. Theory, Chicago, USA, July 2004.
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