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Dino Sejdinović, Robert J. Piechocki and Angela Doufexi
Centre for Communications Research

Department of Electrical & Electronic Engineering
University of Bristol, Bristol, UK, BS8 1UB

{d.sejdinovic, r.j.piechocki, a.doufexi}@bristol.ac.uk

ABSTRACT
Over the past decade, rateless codes, i.e., digital fountain
codes, have emerged as an efficient and robust solution for
reliable data transmission over packet erasure networks and
a particularly suitable one for multicasting and broadcast-
ing applications where users may experience variable chan-
nel conditions and packet loss rates, such as mobile en-
vironments. Luby Transform (LT) and Raptor codes are
practical fountain codes with a capacity approaching per-
formance and a low computational cost. In addition to
their channel coding applications, the use of fountain codes
for various kinds of distributed source compression and dis-
tributed joint-source channel coding has been extensively
studied lately, and with promising results. However, a sys-
tematic treatise of the code design and optimization con-
siderations for such non-standard applications of fountain
codes is still absent. In this contribution, we overview the
main results concerned with rateless codes for distributed
source coding and outline several examples of data dissemi-
nation protocols where carefully designed fountain codes can
provide strikingly simple, yet robust solutions yielding both
distributed source coding and channel coding gains.

1. INTRODUCTION

1.1 Fountain coding
Unlike traditional coding schemes, fountain codes are able

to adapt their rate on-the-fly - they are rateless in the sense
that a potentially limitless number of encoding symbols can
be generated from the source data and the original message
can be recovered from any sufficiently large set of encoding
symbols [1]. The first practical fountain codes were Luby-
Transform (LT) codes [2], whereas their extension, Raptor
codes [3], are a state-of-the-art application layer forward er-
ror correction scheme with excellent performance and lin-
ear encoding/decoding complexity. Raptor codes have been
standardized in the Third Generation mobile cellular wire-
less multimedia broadcast and multicast [4] and digital video
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broadcasting to handheld devices [5]. It is possible to adapt
LT and Raptor codes for transmission over noisy channels
[6, 7, 8, 9], as they are more amenable to soft-decision de-
coding than classical erasure codes, such as Reed-Solomon
codes. Even though it has been demonstrated that the uni-
versal code parameters generally do not exist for noisy chan-
nel models [9], fountain codes have shown promising perfor-
mance over channels such as binary input additive white
Gaussian noise channel (BIAWGNC) [9] and block-fading
channels [8]. In addition, fountain codes have been used
in the context of lossless data compression [10], distributed
source coding [11, 12, 13, 14, 15], distributed joint source-
channel coding [16, 17, 18], transmission of scalable video
[19, 20, 21, 22] and transmission of multiple independent
sources in relay networks [23].

1.2 Distr ibuted source coding problem
Distributed source coding (DSC) problem deals with the

compression of correlated sources. From the seminal Shan-
non’s source coding theorem, we know that the lower bound
on the total compression rate of two correlated sources X
and Y is their joint entropy H(X,Y ). However, another
celebrated result, by Slepian and Wolf [24], asserts that, re-
markably, the separate compression (Slepian-Wolf Coding -
SWC) suffers no rate loss compared to the case of joint com-
pression. Namely, the region of the achievable compression
rates is given by

RX ≥ H(X|Y )

RY ≥ H(Y |X)

RX +RY ≥ H(X,Y ), (1)

where RX and RY are respectively the compression rates
corresponding to sources X and Y .

The scenario in which source Y is fully known at the de-
coder, i.e., it is independently compressed using an entropy
coder with rate H(Y ), while the source X is compressed us-
ing the estimate of the correlation between X and Y (with
rate ideally close to H(X|Y )) is one of the simplest and the
most widely studied cases of DSC problem. It is commonly
referred to as the asymmetric SWC or coding with decoder
side information.

Robust rateless distributed source code design in the asym-
metric SWC would find applications in data synchronization
scenarios [25], where each receiver typically has a possibly
outdated version of some common database, as well as in
cross-layer design of scalable video transmission [17]. A
clear benefit of a rateless code construction for asymmetric
SWC is that it simultaneously represents a distributed joint

Digital Object Identifier: 10.4108/ICST.MOBIMEDIA2009.7455 
http://dx.doi.org/10.4108/ICST.MOBIMEDIA2009.7455 



source-channel coding scheme. Namely, rateless scheme would
yield both the distributed source coding gains, by utilizing
the presence of side information, and the channel coding
gains, as it enables reliable transmission over lossy links.

Correlation between sources X and Y can take different
forms. Indeed, a common way to model correlation is to
view X and Y as, respectively, the input and the output of
a certain communication channel, referred to as correlation
channel or virtual channel. One of the simplest cases is
the one where Y is a partial information about X, i.e., the
output of a binary erasure channel (BEC) when X is the
input.

In section 2, main relevant results on the design and anal-
ysis of fountain codes for channel coding are reviewed. In
section 3, the use of rateless codes in coding with partial
information is studied. Section 4 considers the problem of
symmetric Slepian-Wolf coding where two transmitters have
a number of data packets in common and section 5 studies
the possibilities of soft decoding of fountain codes for use
in more complicated correlation channel models. Section 6
concludes the paper.

2. FOUNTAIN CODESFOR CHANNEL
CODING

Practical fountain codes, such as LT (Luby Transform)
codes [2], are binary linear sparse graph codes [26], decoded
by a message-passing belief propagation (BP) algorithm [27].
The message block x = (x1, x2, . . . , xk) consists of k input
symbols, i.e., information packets1 xi ∈ F

b
2, i ∈ Nk, b ∈ N,

and the encoding packets are produced by bitwise XOR op-
eration. The only two parameters of an LT code ensemble
LT (k,Ω(x)) are the block length k and a certain probability
mass function Ω on set Nk, called output degree distribution
2. Output degree distribution is typically identified with its
generating polynomial Ω(x) =

∑k

d=1 Ωdx
d, where Ωd is the

probability of degree d ∈ Nk. The generation of a single LT
encoding packet consists of two simple steps which can be
performed as many times as necessary in order to produce
enough encoding packets for successful decoding: (a) Sample
an output degree d with probability Ωd, (b) Sample d dis-
tinct packets from the message block uniformly at random
and XOR them. Good LT codes require the average degree
µ = Ω′(1) of degree distribution Ω(x) to grow at least as
O(log k) (otherwise large error floors occur in the waterfall
region of the decoder) and their computational complexity is
O(k log k). The performance of a fountain code ensemble is
typically measured in terms of the average packet error rate,
i.e., probability that an information packet in the message
block cannot be recovered by the decoder, as the function
of code overhead ε = n/k − 1, where n is the number of
encoding packets observed at the receiver.

Raptor codes [3] are a modification of LT codes obtained
by precoding the message block by a high rate LDPC code.
Raptor codes use a constant average output degree distri-
bution capped at some maximum degree dmax, , i.e., a light

1For any natural number m, we denote by Nm the set
{1, 2, . . . ,m}
2Performance of sparse graph codes is dependant on the
distribution of node degrees in the decoding graph, cf.
[26]. In this paper, we reserve the symbols Ω(x),Φ(x) and
ω(x), φ(x) for the node perspective and their corresponding
edge perspective output node degree distributions respec-
tively, ω(x) = Ω′(x)/Ω′(1), φ(x) = Φ′(x)/Φ′(1)

degree distribution. Raptor codes were shown to have ex-
cellent performance and linear encoding and decoding com-
plexity, as the number of edges in the decoding graph is
O(k). Lower encoding and decoding complexity is possible
by relaxing the condition that all the input packets in the
message block need to be decoded at the receiver end. In-
stead, only a certain sufficiently large fraction of the input
symbols is required to be decoded and precoding provides
the additional redundancy within the message block, which
should be sufficient to complete the decoding and thus re-
move the error floor. Further elaboration of these ideas can
be found in [28] where the intermediate performance of LT
codes is studied.

The asymptotic performance of an LT code ensemble with
a light degree distribution is captured by the following ver-
sion of And-Or lemma [29], based on the Poisson approxima-

tion I(x) = eα(x−1) of the input degree distribution (equal
to Binomial( 1

k
, αk) by the code design).

Lemma 1. At overhead ε, the packet error rate of an en-
semble LT(k,Ω(x)) converges to y = liml→∞ yl, as k → ∞,
where:

y0 = 1,

yl = exp
(

−(1 + ε)Ω′(1 − yl−1)
)

, (2)

or equivalently:

y0 = 1,

yl = exp (−αω(1 − yl−1)) , (3)

where α is the average input degree and ω(x) is the edge
perspective output degree distribution.

Above lemma can be transformed into the linear program-
ming routine for the calculation of asymptotically good out-
put degree distributions. We fix the average input node de-
gree α = Ω′(1)(1 + ε) and minimize the code overhead such
that the desired packet error rate δ is achieved. The code
overhead can be expressed in terms of the edge perspective
distribution ω(x) as 1+ε = α

∑dmax

d=1
ωd

d
. The generic linear

program is given by:

LP : minα

dmax
∑

d

ωd

d
(4)

α

dmax
∑

d=1

ωdz
d−1
i ≥ − ln(1 − zi), i ∈ Nm,

dmax
∑

d=1

ωd = 1, ωd ≥ 0, d ∈ Ndmax
,

where 0 = z1 < z2 < · · · < zm = 1 − δ are m equidistant
points on [0, 1 − δ], δ is the desired error rate, and dmax

is the maximum degree of ω(x). The degree distribution
Ω(x) used in actual LT encoder can be determined from

ω(x) as Ω(x) =
∫

x

0
ω(z)dz

∫

1

0
ω(z)dz

. Note that the solution of (4) does

not depend on the average input degree α. Namely, we can
allow variables ωd to sum to an undetermined α and obtain
an unnormalized edge perspective degree distribution. In
further, we will omit α from the linear programs.

Classical fountain codes are inherently non-systematic as
their encoding symbols are random functions of the input
symbols. Nonetheless, systematic fountain codes may be
designed at the expense of higher encoding/decoding com-
plexity. Namely, it is necessary to explicitly calculate the set
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of intermediate symbols x̄, from the message block x, such
that the input message will be replicated in the fountain
bitstream. The encoder solves the equation

G
{1:k}
LT x̄

T = x
T (5)

where G
{1:k}
LT is an invertible k × k matrix formed by the

first k rows of the LT generator matrix (preprocessing is re-

quired to ensure G
{1:k}
LT is invertible). In systematic Raptor

codes, encoder and decoder both perform two basic oper-
ations [30]: code constraints processing, which solves a set
of constraint equations (5) (at the encoder) or decodes the
intermediate symbols from the observed encoding symbols
(at the decoder), and LT encoding, which generates the ac-
tual output stream (at the encoder) or calculates the input
vector based on the intermediate symbols (at the decoder).
The computation of the intermediate symbols with Gaus-
sian elimination is generally quadratic in k, unless a special

structure of matrix G
{1:k}
LT is imposed such that the linear

system (5) can be solved with the direct elimination of one
unknown at a time.

3. CODING WI TH PARTIAL INFORMATION
To demonstrate the utility of a rateless code solution for

coding with partial information, let us consider the following
example.

Example 1. A source node contains a large number k of
information packets to be disseminated to a large number
of receivers over lossy links. However, each receiver already
knows a subset of the data packets, i.e., approximately (1 −
p)k packets for 0 < p < 1. Different receivers can possibly
have knowledge of different packets. This could have arisen,
e.g., as a result of transmission from other sources. Now,
since the transmitter has no knowledge of which packets are
available at which receivers, he is bound to encode over all
its packets for multicast transmission.

Ideally, a rateless code is the solution sought after for the set-
ting outlined in the example, as it would be able to naturally
adapt its rate to different or variable packet loss rates across
the set of receivers. Alternatively, some kind of Hybrid-
ARQ scheme could be employed, but due to a large number
of receivers, feedback resources may be severely limited and
this solution may lead to feedback implosion3. Clearly, each
receiver must receive at least pk encoding packets to suc-
cessfully recover the unknown part of the message. But how
close can we get to this lower bound? As shown in [13, 14],
standard LT and Raptor codes are not able to make any
use of the partial information, and would require that each
receiver receives slightly more than k encoding packets, to
correctly recover entire message, which is very inefficient,
especially for small p. However, slight modification of LT
and Raptor codes is able to perform much better, as we
demonstrate in the rest of this section.

3.1 Systematic Raptor-based solution
The setting of Example 1 can be viewed as an asymmetric

SWC problem where correlation channel is a binary erasure
channel (BEC) with erasure probability p. In addition, we

3Feedback implosion is a common problem in broadcasting
arising as different receivers may request retransmission of
different data packets, which in turn may lead to the multi-
ple transmission of all data packets.

Figure 1: Systematic Raptor design for coding with

partial information.

assume that the transmission occurs over another BEC. By
utilizing the systematic Raptor design, this problem is re-
duced to a channel coding problem. Namely, we assume that
the transmission of the systematic symbols has already oc-
curred and resulted in the decoder side information. Now,
systematic Raptor encoder needs to produce and transmit
only the non-systematic encoding symbols. Hence, a univer-
sal systematic rateless code for transmission over an erasure
channel would be sufficient to optimally solve the proposed
problem. The application of systematic Raptor design in
this setting is illustrated in Fig. 1. The encoder calculates
intermediate symbols x̄ for each information sequence via
Gaussian elimination, and then proceeds with the encoding
from the (k+1)-th row of the generator matrix - as the strat-
egy consists of transmitting only the non-systematic encod-
ing symbols. The decoder directly embeds the decoder side
information y in the decoding graph. The erased symbols in
y are simply ignored, whereas nonerased symbols are used
as the output corresponding to the systematic symbols, i.e.,
the first k symbols of the fountain encoding stream. Upon
recovering the intermediate symbols, an additional encoding
step is performed in order to calculate the (unknown part of
the) actual message x by multiplying intermediate symbols
x̄ with the first k rows of the LT generator matrix. The uni-
versality of Raptor codes for erasure channels implies that
application of the systematic Raptor codes to the proposed
problem will result in a nearly optimal design.

3.2 Non-systematicLT codeswith modified de-
gree distr ibution

An arguably simpler way is to avoid systematic Raptor
construction altogether and to modify degree distribution
of an LT code in such a way as to make use of partial in-
formation about the source. This was attempted in [13]
by the introduction of a shifted robust soliton distribution
with superior performance over the standard output degree
distributions in the side information setting. The rationale
behind the shifted robust soliton distribution is simple. If
the original information sequence x contains k symbols and
τ of those symbols are already known at the decoder, each
output node in the decoding graph will have (τ/k)-fraction
of edges removed prior to the execution of the decoding algo-
rithm. Thus, shifted robust soliton distribution is designed
such that the output degree distribution obtained after this
removal of edges resembles robust soliton distributions from
[2].

A different approach to the design of output degree dis-
tributions for fountain codes with decoder side information
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was developed in [14, 15]. This approach uses And-Or per-
formance analysis analogous to that of Lemma 1 and char-
acterizes the role that the decoder side information plays
in the structure of the decoding graph. For the case when
correlation channel is a BEC with probability p, this role is
described by a simple relationship between the degree dis-
tribution used to generate encoding symbols and the degree
distribution on the resulting decoding graph, given by the
following Lemma.

Lemma 2. Let Φ(x) =
∑k

d=1 Φdx
d and Ω(x) =

∑k

d=1 Ωdx
d

be respectively the the output degree distribution used at the
encoder (incoming degree distribution) and the output degree
distribution after removal of the known source nodes from
the decoding graph (resulting degree distribution), then:

Ω(x) = Φ(1 − p+ px), (6)

Proof. The probability that an arbitrary output node
has degree i after removal of the known source nodes condi-
tioned on its degree before removal being j ≥ i is given by
(

j

i

)

(1−p)j−ipi. Thus, the relation between the distributions
Φ and Ω is given by

Ωi =

dmax
∑

j=i

Φjp
i(1 − p)j−i, i ∈ Ndmax

, (7)

which is equivalent to (6).

From previous lemma, it follows that ω(x) = φ(1 − p+ px),
where φ(x) is the incoming edge perspective output degree
distribution, whereby a linear program for optimization of
the incoming degree distributions can be obtained:

LP : min
1

p

dmax
∑

d=1

ωd

d

dmax
∑

d=1

ωdz
d−1
i ≥ − ln(

1 − zi

p
), i ∈ Nm (8)

ωd ≥ 0, d ∈ Ndmax
.

where 1−p = z1 < z2 < · · · < zm = 1−δp are equidistant
points on [1 − p, 1 − δp].

Similarly as in [28], we study the dual of the above (undis-
cretized) program given by:

max
pZ

E[− ln(
1 − Z

p
)] (9)

E[Zd−1] ≤ 1

pd
, d ∈ Ndmax

Z ∈ [1 − p, 1 − δp],

The dual program enables us to lower-bound the necessary
code overhead ε with respect to the minimum value pk of re-
ceived encoding packets, i.e., n = (1+ε)pk encoding packets
should suffice for the successful decoding. Indeed, for any
feasible solution Z of the dual, the value of the objective
function of the dual ψdual is less than the optimal value of
the objective function of the primal ψ∗

primal = 1+ε∗. We can
obtain a feasible solution of the dual by restricting the search
to the discrete distributions with finite support (e.g., on a
uniform grid), and thus calculate the lower bound on the
code overhead penalty arising in the non-systematic foun-
tain codes for coding with partial information. The lower
bounds obtained this way, for δ = 0.01 and uniform grid of
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Figure 2: Lower and upper bounds for the overhead

penalty in coding with partial information.
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Figure 3: Non-systematic LT codes for coding with

partial information.

granularity 0.001 are shown in Fig. 2 and compared with
upper bounds arising from the shifted robust soliton distri-
bution from [13] derived in [15]. Note that for case p = 1,
or the classical channel coding problem, there is no penalty
- namely, an ensemble of LT codes whose degree distribu-
tions converge pointwise to a limiting soliton distribution
[28] achieves vanishing error rate at an arbitrarily small over-
head as k → ∞, whereas there is a clear gap for p < 1.

Even though the overhead penalty exists in the use of
non-systematic fountain codes for coding with partial infor-
mation, our results indicate that their performance does not
fall too far from the optimal, and may be an interesting
solution afterall. In Fig. 3, we compared the asymptotic
performance and finite length (k = 104) performance of a
custom degree distribution Ω∗(x) = 0.4816x5 + 0.3916x6 +
0.0792x29 +0.005130 +0.0425x100 calculated with linear pro-
gram (8), for p = 0.5, dmax = 100 and δ = 0.004, with that of
truncated shifted robust soliton distribution with the same
maximum degree. Packet error rates are plotted as func-
tions of code overhead ε = n

pk
− 1, where n is the number

of received encoding packets. The results clearly show that
linear programming optimization with (8) yields degree dis-
tributions which could be applied to practical coding with
partial information. Note that the error floors in Fig. 3 can
be removed by precoding, resulting in the non-systematic
Raptor codes for coding with partial information.

4. SYMMET RIC SWC WI TH LT CODES
In this section, we will present the case study of a simple

symmetric DSC scenario using carefully designed LT codes.
Consider the following example:

Example 2. Assume that two source nodes S1 and S2

are trying to disseminate a message of k packets to a large
number of receivers. However, both S1 and S2 actually con-
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Figure 4: Decentralized distributed fountain coding.

tain more than a half of all the packets (but the number of
packets at S1 and S2 is the same). In other words, a certain
portion p < 1/2 of the packets is common to S1 and S2. The
source nodes do not communicate and they are oblivious of
which packets are available at other source node.

Ideally, receivers would need just slightly more than k en-
coding packets to recover the entire message block. But how
does the fact that the data available at source nodes is corre-
lated influence the decoding performance? Note that there
are three different classes of packets: (1) 1−p

2
k packets avail-

able only at node S1, (2) pk packets available at both nodes,
and (3) 1−p

2
k packets available only at node S2. Let us fur-

ther assume that each source node will transmit n
2

encoding

packets produced with a LT (( 1−p

2
+ p)k,Ω(x)) code.

The above setting can be viewed in light of the decen-
tralized distributed fountain coding framework developed in
[31]. This generic setting describes the asymptotic perfor-
mance of dissemination of data dispersed across a set of the
nodes in the network with s multiple independent LT en-
coders, such that the j-th encoder, j ∈ Ns, uses the de-
gree distribution Ωj(x). The decentralised generation of
the encoding packets is described by a weighted bipartite
graph G = (A,B,Θ), illustrated in Fig. 4. In G, nodes
A = {A1, A2, . . . Ar} represent a disjoint partition of Nk,
such that ∀i ∈ Nr, |Ai| = πik, for some πi ∈ [0, 1], and
nodes B = {B1, B2, . . . Bs} represent a disjoint partition of
Nn, such that ∀j ∈ Ns, |Yj | = γjn, for some γj ∈ [0, 1],
and Θ = (θj

i ) is an k × n matrix, such that θj
i is the weight

associated with the edge AiBj . The weights are normalized
such that ∀j ∈ Ns,

∑

i∈Nr
θj

i = 1. It is useful to think
of Ai, i ∈ Nr, and Bj , j ∈ Ns as determining divison of
raw data packets and encoding data packets, respectively,
into classes. Thus, graph G characterises: (1) availability of
data at source nodes: node j has access to the i-th class of
packets if θj

i 6= 0 (2) rate of production of encoding sym-
bols at each of the source nodes: j-th encoder produces
the j-th class of encoding packets, and (3) bias introduced
towards certain portions of data in formation of encoding
packets: at j-th encoder, during the generation of each en-
coding packet, packets from the i-th class are sampled with
probability θj

i . If there is no bias, as would be the case in
the setting of Example 2 as the source nodes are oblivious
of the division of the input packets into classes, non-zero θj

i

are proportional to the sizes of Ai. Graph G and the set of
degree distributions {Ωj(x)}j∈Ns

describe a code ensemble
DDLT (k, G, {Ωj(x)}j∈Ns

).
A generalization of the classical And-Or tree argument

yields the following result [31]:

k
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Figure 5: Symmetric Slepian Wolf Coding in Ex-

ample 2 as an instance of decentralized distributed

fountain coding.

Theorem 1. At overhead ε, packet error rate of an en-
semble DDLT (k,G, {Ωj(x)}j∈Ns

) within the i-th class of in-
put packets converges to yi,∞ = liml→∞ yi,l, as k → ∞,
where:

yi,0 = 1, (10)

yi,l+1 = exp
[

−(1 + ε)

s
∑

j=1

θj
i

γj

πi

Ω′
j(1 −

r
∑

m=1

θj
mym,l)

]

.

The setting described in Example 2 can be cast as an in-
stance of the generic decentralized distributed fountain cod-
ing, and this is illustrated in Fig. 5. Therefore, the recursive
equation describing the asymptotic packet error rate in, for
example, class 1 of input packets is given by:

y1,l+1 = exp
[

−1 + ε

1 + p
· (11)

Ω′(
(1 − p)(1 − y1,l) + 2p(1 − y2,l)

1 + p
)
]

,

and similar equations are valid for y2,l+1 and y3,l+1. It is
easily checked that y3,l = y1,l and that y2,l = y2

1,l, ∀l ≥ 0.
Thus, one can trace the asymptotic behaviour of all three
packet error rates with a single parameter, which allows sim-
ple transformation of the above recursive equations into a
linear program optimization procedure.

Now, let us for the sake of simplicity assume p = 1/3,
i.e., a third of all the packets are available at both sources.
Simple transformations yield the following linear program:

LP : min

dmax
∑

d=1

ωd

d
(12)

3

4

dmax
∑

d=1

ωdz
d−1
i ≥ − ln(

√
9 − 8zi − 1

2
), i ∈ Nm

ωd ≥ 0, d ∈ Ndmax
.

where 0 = z1 < z2 < · · · < zm = 1 − δ
2
− δ2

2
are equidistant

points on [0, 1− δ
2
− δ2

2
]. The solution of this linear program

is an edge perspective degree distribution which reaches the
packet error rate of δ within classes 1 and 3 (and δ2 within
class 2) at the minimum overhead.

The degree distribution we obtained using a linear pro-
gram in (13), by setting δ = 0.01 and dmax = 100 is given
by Ω∗(x) = 0.0020x + 0.4305x2 + 0.2205x3 + 0.0793x5 +
0.1097x6 + 0.0508x12 + 0.0409x13 +0.0343x30 +0.0106x32 +
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Figure 6: Symmetric Slepian Wolf Coding with LT

codes.

0.0215x100 . Our numerical results indicate that the designed
degree distribution successfully takes advantage of the fact
that two sources contain correlated information. Simulation
results for large blocklengths, k = 6·104 and k = 1.5·105 are
consistent with our asymptotic analysis, as demonstrated
in Fig. 6. For comparison, we included results for typical
Soliton-like degree distribution Ωraptor(x) used in Raptor
codes [3, 12], which is clearly penalized by much higher er-
ror floors in this setting.

The symmetric Slepian Wolf coding is particularly the
case for which non-systematic LT design with its simplicity
and lower computational complexity has an advantage over
the systematic raptor design, as it is not clear if and how
the described scenario can take advantage of the systematic
raptor design.

5. SOFT-DECISION DECODING FOR THE
SIDE INFORMATION PROBLEM

In this section, by using the ideas of fountain coding on
noisy channels, we review the rateless code design for more
realistic versions of distributed source coding, i.e., when cor-
relation channel describing the relationship between sources
X and Y is noisy, as in the following example.

Example 3. Binary information source X over the al-
phabet {−1, 1} is to be multicast to a large number of re-
ceivers over possibly noisy links. Each receiver j has an
apriori access to a distorted version of the source, e.g., a
correlated source Yj such that P[X 6= Yj ] = p, or alterna-
tively a source impaired by a zero mean Gaussian noise with
variance σ2, i.e., Yj = X + N (0, σ2).

A basic theoretical tool for analysis of BP decoder is density
evolution (DE) [32], and this tool heavily relies on Gaus-
sian approximation [33] of the messages passed during the
decoding algorithm. In fountain code design for noisy chan-
nels [9], more accurate analysis is possible [34]. In [15],
these techniques were used to provide an optimization frame-
work for asymmetric SWC, where correlation channel was
assumed to be a BIAWGN channel, but the techniques also
apply to other correlation channels, e.g., when correlation
channel is a binary symmetric channel (BSC). In [12], sys-
tematic raptor codes were adopted for asymmetric SWC
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Figure 7: The comparison of asymmetric DSC with

a BIAWGN correlation channel with various kinds

of Raptor codes.

in an analogous manner to that presented in Section 3.1,
and it was demonstrated how systematic raptor-based solu-
tion is a rather natural approach, which effectively reduces
the problem to that of channel coding. Proposed approach
was benchmarked and compared to that of Turbo codes and
LDPC codes. However, it was argued that non-systematic
Raptor codes are not applicable to DSC problem. Nonethe-
less, similarly as in the case of partial information, a code
design problem for non-systematic fountain codes can be
formulated as a natural modification of density evolution
formulae, which would take into account the soft informa-
tion already available about the source at the decoder side.
Albeit being suboptimal, this strategy bears striking sim-
plicity and lower complexity, as the size of the decoding
graph is much smaller. For the actual code design tech-
niques we refer interested reader to [15], where we derived
the code optimization for the case were correlation chan-
nel is a BIAWGN channel for modified non-systematic Rap-
tor codes. It has been shown that a non-systematic Raptor
code with optimized Ω(x) does approach the performance
of the systematic Raptor code scheme in the area of Signal-
to-Noise Ratio (SNR) of the correlation channel for which
it was optimized, but exhibits high sensitivity to overesti-
mates of correlation SNR. This is illustrated by simulation
results in Fig. 7, where we compare the performance of the
non-systematic Raptor code with Ω(x) optimized for corre-
lation channel with SNR = 3dB with the performance of
a systematic and non-systematic Raptor code with classical
fountain coding degree distribution Ωraptor(x) from [3]. The
vertical axis represents the average compression rate neces-
sary for succesful decoding, i.e., t/k, where t is the average
number of encoding symbols received at the decoder, and
k = 3140 was the block length.

6. CONCLUSIONS
We have presented an overview of uses of fountain codes

for distributed source coding. As fountain codes are essen-
tially erasure correcting codes, they find the best use in dis-
tributed source coding problems where correlation channel
is an erasure channel, and here we presented the code design
for both symmetric and asymmetric Slepian-Wolf coding for
such cases. Systematic raptor code solution achieves optimal
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performance in asymmetric case, but at the cost of increased
computational complexity, whereas in symmetric case, care-
fully designed non-systematic fountain codes exhibit very
good performance. We have also briefly overviewed the use
of fountain codes in asymmetric Slepian-Wolf coding with a
noisy correlation channel. Our results indicate that fountain
codes are a natural practical coding scheme for DSC scenar-
ios and that their design may be tuned to perform close to
the optimal achievable rates with low computational cost.
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[7] H. Jenkač, T. Mayer, T. Stockhammer, W. Xu., “Soft
decoding of LT codes for wireless broadcast,” Proc.
IST Summit 2005, Dresden, Germany, June 2005.

[8] J. Castura, Y. Mao. “Rateless coding over fading
channels,” IEEE Commun. Letters, 10(1), 46-48, Jan.
2006.

[9] O. Etesami, A. Shokrollahi, “Raptor codes on binary
memoryless symmetric channels,” IEEE Trans. Info.
Theory, 52(5), 2033-2051, May 2006.

[10] G. Caire, S. Shamai, A. Shokrollahi, S. Verdu,
“Fountain codes for lossless data compression”,
Algebraic Coding Theory and Information Theory,
DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 68, 1-20, AMS, 2006.

[11] B.N. Ndzana, A. Shokrollahi, J. Abel, “Fountain codes
for the Slepian-Wolf problem”, Proc. Allerton Conf.,
Allerton, USA, 2006.

[12] M. Fresia, L. Vandendorpe, “Distributed source coding
using Raptor codes”, Proc. IEEE Global
Communications Conf. (GLOBECOM), Washington
D.C., USA, Nov. 2007.

[13] S. Agarwal, A. Hagedorn, A. Trachtenberg, “Adaptive
rateless coding under partial information”, Proc. Info.
Theory and Applications (ITA) Workshop, San Diego,
USA, Feb. 2008.
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