
AND-OR Tree Analysis of Distributed LT Codes
Dino Sejdinović, Robert J. Piechocki and Angela Doufexi

Centre for Communications Research
Department of Electrical & Electronic Engineering

University of Bristol, Bristol, UK
Email: {d.sejdinovic, r.j.piechocki, a.doufexi}@bristol.ac.uk

Abstract—In this contribution, we consider design of dis-
tributed LT codes, i.e., independent rateless encodings of multiple
sources which communicate to a common relay, where relay is
able to combine incoming packets from the sources and forwards
them to receivers. We provide density evolution formulae for
distributed LT codes, which allow us to formulate distributed LT
code design problem and prove the equivalence of performance of
distributed LT codes and LT codes with related parameters in the
asymptotic regime. Furthermore, we demonstrate that allowing
LT coding apparatus at both the sources and the relay may prove
advantageous to coding only at the sources and coding only at
the relay.

I. INTRODUCTION
Fountain codes [1] [2], [3] are an efficient and robust

application layer forward error correction solution for data
transmission over packet erasure networks. Unlike traditional
coding schemes, fountain codes are able to adapt their rate
on-the-fly - they are rateless in the sense that a potentially
limitless number of encoded packets can be generated from the
source data. This makes fountain codes particularly suitable
for multicasting and broadcasting applications where users
may experience different channel characteristics. LT (Luby
Transform) codes [2] are the first practical realization of
fountain codes and offer capacity approaching performance
at any packet erasure rate at the encoding and decoding
computational cost of O(k log k), where k is the number of
packets in an original source block. Raptor codes [3] are a
compound coding structure, usually including a high-rate outer
LDPC code and an inner LT code, which is able to nearly
optimally solve the transmission problem over an unknown
erasure channel at the reduced computational cost of O(k). A
systematic version of Raptor codes has been standardized by
3GPP [4].
Distributed LT codes were introduced in [5] for independent

rateless erasure encodings of multiple sources. Code design
at the sources aims to result in a decoding behaviour at
the sink which resembles the Soliton-like LT decoding be-
haviour. Soliton-like distributions arise from AND-OR tree
analysis, where they appear as solutions to the problem of
constructing an LT code which complies with graph pruning
belief propagation algorithm for erasure recovery. Here, we
describe and study a more general version of distributed LT
codes, applicable to any number of sources, where relay is
allowed to selectively combine incoming packets indepen-
dently of their degrees in a randomized fashion, naturally
extending distributed LT coding scenario of [5]. We then

provide a version of the AND-OR tree lemma for such
selective distributed LT codes, which allows us to formulate
the preliminary optimization framework for code parameters.
We also prove the equivalence of distributed LT codes and
certain LT codes, thereby answering the question posed in [5]
of whether distributed LT code design problem should target
the same code parameters as classical LT code design problem,
namely Soliton-like distributions.

II. LT CODES AND ASYMPTOTIC ANALYSIS

Fountain code Fk on the information sequence of length k
is generally described by a random variable R on F

k
2 (column

vector). The generator matrix of the code can be formed row
by row as

G = [R1 R2 . . . Rn . . .]T, (1)

where Ri are independent realizations of R, and the number
of rows can be determined on-the-fly.
Although LT codes fully realize the digital fountain

paradigm [1], their simplicity makes them amenable to the-
oretical analysis and various design considerations. The only
two parameters of an LT code are the length of information
sequence k and the probability distribution (Ω1, . . . ,Ωk) on
the set Nk = {1, 2, . . . , k}, where Ωi is the probability that
the value i is chosen. The distribution (Ω1, . . . ,Ωk) is called
the output degree distribution, since it determines the weights
of rows in a generator matrix, which translates to the degrees
of the output nodes in the decoding graph. The output degree
distribution is usually written in the generating polynomial
notation as Ω(x) =

∑k

d=1 Ωdx
d, and we refer to an LT code

with these parameters as LT(Ω(x), k).
The generation of LT encoded packets consists of two

simple steps: (1) Sample an output degree d with probability
Ωd, and (2) Sample d data packets uniformly at random from
the information sequence and XOR them. These steps can be
performed as many times as necessary in order to produce
enough encoded packets for successful decoding. Distribution
on F

k
2 is determined by Ω as Pr(R = v) = Ωw(v)/

(
k

w(v)

)
, for

any v ∈ F
k
2 , where w(v) is the Hamming weight of v.

The decoding of an LT code utilizes a belief propagation
decoding algorithm on the factor graph of the linear encoder
F

k
2 → F

N
2 obtained by restriction of the fountain code mapping

to exactly those N coordinates in the fountain encoded stream
observed at the receiver. In other words, receiver sees LDGM

261978-1-4244-4536-3/09/$25.00 ©2009 IEEE

ITW 2009, Volos, Greece, June 10 - 12, 2009

(Low Density Generator Matrix) encoded packets. Several pa-
rameters describe the decoding graph - its output node degree
distribution Ω(x), its input node degree distribution Λ(x), and
edge perspective [6] output and input degree distributions1

ω(x) = Ω′(x)
Ω′(1) and λ(x) = Λ′(x)

Λ′(1) . The decoding algorithm
is particularly simple in the case of erasure channels and is
equivalent to greedy graph pruning (cf. [6]). The performance
of a particular code ensemble can be measured as a function
of code overhead ε = N

k
− 1, as N varies.

Good LT codes require the average output degree μ = Ω′(1)
to grow at least as log k - otherwise large error floors occur in
the waterfall region of the decoder. Robust soliton distribution
[2] is the example of degree distribution that complies with
greedy graph pruning very well in practice and its average
degree is about log k. Raptor codes utilize degree distributions
independent of k (with constant average degree) and error floor
is removed by an outer LDPC code. These “light” degree
distributions are capped at some maximum output degree
dmax, i.e., Ω(x) =

∑dmax

d=1 Ωdx
d.

The asymptotic behaviour of an LT code with constant
average degree distribution is captured by a standard AND-
OR tree analysis argument [7]:

Lemma 1. The erasure rate of an LT(k, Ω(x)) at overhead
ε, as k → ∞, is given by y = liml→∞ yl, where yl is given
by:

y0 = 1, (2)
yl = exp (−αω(1 − yl−1)) ,

where α = Λ′(1) is the average input degree.

Note that α can be expressed via the output average degree
μ = Ω′(1) and the code overhead ε, as αk = μk(1 + ε) since
both sides are the number of edges on the decoding graph.
This allows us to express the AND-OR formulae (2) in terms
of code overhead ε:

y0 = 1, (3)
yl = exp (−(1 + ε)Ω′(1 − yl−1)) .

Lemma 1 can be easily transformed into an optimization
procedure for asymptotically good output degree distributions
Ω(x). The linear programs used for optimization are given in
the Appendix. In [9], related linear programming techniques
are used to optimize the asymptotic degree distributions for
partial recovery. Note that these linear programs can be ex-
tended to a heuristic finite length design problem, as discussed
in [3], [8]. The degree distribution obtained this way generally
resemble Soliton distributions described in [2] and we thus
refer to them as to Soliton-like distributions.

III. DISTRIBUTED LT CODES
In [5], the authors introduce techniques of decomposing

LT codes into distributed LT (DLT) codes. DLT codes can

1Throughout the paper we will reserve symbols Ω, Λ, Γ and Φ to denote
node perspective degree distributions and symbols ω, λ, γ and φ to denote
their respective edge perspective degree distributions.

be used to encode data from multiple sources independently
and after that a common relay combines encoded packets
from multiple sources to produce a bit-stream approximating
that of an LT code and transmit it over an erasure channel.
The deconvolution of Robust soliton distribution was used to
formulate design of good DLT codes in the cases of two and
four sources, and substantial performance benefits have been
noted in comparison to a strategy where each source uses
independent LT encoder and the relay simply forwards the
encoded packets.
In a general scenario, one may consider a network with

t sources, such that each source contains independent and
disjoint set of k data packets. Let us assume that each source i
encodes its k packets via LT(Φi(x), k) code, i.e., a DLT code
with properly modified output degree distribution, and relay
simply XOR’s all the incoming packets. We will refer to this
scenario as to DLT({Φi(x)}t

i=1, t, k) and DLT(Φ(x), t, k) for
Φi(x) = Φ(x), i = 1, . . . , t. The receiver that has successfully
obtained N = tk(1 + ε) encoded packets from the relay
needs to invert a generator matrix G = [G1 G2 · · · Gt]
formed as the horizontal concatenation of generator matrices
Gi, i = 1, 2, . . . , t of encoding operation at the i-th source.
The decoding graph G has tk input nodes and N output
nodes, and can be thought of as the union of all factor
graphs Gi, corresponding to matrices Gi, i = 1, 2, . . . , t,
assuming they share the same output nodes. The resulting
output degree distribution in graph G is Ω(x) =

∏t

i=1 Φi(x)
but it is not immediately clear if the decoding operation on
graph G is equivalent to decoding operation of an LT(Ω(x) =∏t

i=1 Φi(x), tk) code whose decoding graph bears the same
output degree distribution. Namely, the random variable R
on F

t·k
2 induced by LT(Ω(x) =

∏t

i=1 Φi(x), tk) is dis-
tributed as Pr(R = v) = Ωw(v)/

(
t·k

w(v)

)
. On the other side,

DLT({Φi(x)}t
i=1, t, k) forms a different distribution on F

t·k
2 ,

as Pr(R = v) =
∏t

i=1

Φ
i,w(vi)

(k

w(vi))
, where vi are the values of

v within i-th group of k bits. In the following, we will prove
that in the limit of large k, two decoding problems when
Φi(x) = Φ(x), i = 1, . . . , t are equivalent. If not all output
degree distributions are the same, this is generally not true,
as output degree distributions of different average degree may
induce different average input degrees in different sources and
such scenario may yield an Unequal Error Protection (UEP)
property across sources. Fountain codes for UEP are an active
area of research [10],[11], and this may be another interesting
application of distributed LT coding scenario.
Next, we formulate a version of AND-OR lemma for density

evolution of DLT codes.

Lemma 2. The erasure rate of an DLT({Φi(x)}t
i=1, t, k), as

k → ∞, is given by y = liml→∞ yl, where yl is given by:

y0,i = 1 (4)

yl,i = exp

⎛
⎝−αiφi(1 − yl−1,i)

∏
j �=i

Φj(1 − yl−1,j)

⎞
⎠ .

In particular, for Φi(x) = Φ(x), i = 1, . . . , t, all input average

262

degrees are the same, i.e., αi = α, i = 1, . . . , t, and

y0 = 1 (5)
yl = exp

(
−αφ(1 − yl−1)(Φ(1 − yl−1))

t−1
)
.

Proof: The input node degrees in the i-th source are
distributed as Binomial(1

k
, αik), which converges pointwise

to Poisson(αi) as k → ∞. Pick a random source i and
a random input node a within that source. At the zeroth
iteration, no information is available about this node and thus
the probability that a is erased is y0,i = 1. Now consider the
l-th iteration. Node a stays erased if and only if it receives
erasure-message from each of its neighbours, and it has d of
them with probability Λi,d. Consider a random output node
f ∈ N (a) - which is equivalent to choosing a random edge
connected to a in Gi, but to choosing a random output node
in Gj for j �= i. Node f has degree di in graph Gi with
probability φi,di

and degree dj in graph Gj with probability
Φj,dj

, j �= i. For the moment fix degrees of node f within
each of the sources to some values d1, d2, . . . , dt. Then, the
probability that f sends an erasure to input node a in source
i at the l-th iteration is given by

1 − (1 − yl−1,i)
di−1

∏
j �=i

(1 − yl−1,j)
dj , (6)

since f needs to receive an erasure from any of its di − 1
neighbours in source i or any of its dj neighbours in any other
source j. Averaging over exponents for each of the sources
together with Poisson approximation Λi(x) = exp(−αi(x −
1)) of the input degree distribution gives the lemma.
Above lemma asserts the equivalence of BP decoding of

DLT(Φ(x), t, k) and LT(Φ(x)t, tk) and this can be directly
checked as well. However, we will prove a more general result
in the next section.

IV. SELECTIVE COMBINING AT THE RELAY
The obvious problem that arises in the scenario considered

above is that BP decoder requires an output node of degree 1
in the decoding graph to begin decoding. On the other side,
when t ≥ 2, if no distribution Φi(x), i = 1, . . . , t allows
encoded packets of degree 0, no degree 1 packets will be
transmitted from the relay. But allowing degree 0 packets is
clearly wasteful of resources. The way around this problem
is to consider allowing relay to selectively combine incoming
packets. In [5], selective combining was demonstrated for two
and four sources and it was observed that these naturally
extend to 2m sources for any m ∈ N. We will extend
this approach for any number of sources t, and fundamental
difference of our approach is that, as opposed to [5], selective
combining can be performed independently of the degrees
of the incoming packets at the relay. Consider allowing that
for each set of incoming packets at a single iteration, relay
may choose a value from the set Nt = {1, . . . , t} according
to distribution (Γ1, Γ2, . . . ,Γt), where Γi is the probability
that the value i was chosen. As usual, let us denote this
probability distribution in its generating polynomial notation
by Γ(x) =

∑t

d=1 Γdx
d. After choosing “degree” d, relay may

choose d incoming packets uniformly at random, XOR them
and forward the new packet. We will refer to the scenario
where relay is allowed to selectively combine incoming pack-
ets as to the code ensemble SDLT(Γ(x), {Φi(x)}t

i=1, t, k) and
SDLT(Γ(x), Φ(x), t, k) when Φi(x) = Φ(x), i = 1, . . . , t.
Distribution Γ(x) forms another factor graphH attached to this
coding scenario, which effectively describes coding operation
at the relay. This graph has N output nodes and t source nodes
and an edge between output node f and source node i signifies
that packet f is a linear combination of packets from source
i, amongst others. We note that this factor graph has output
degree distribution Γ(x) and edge perspective output degree
distribution γ(x) = Γ′(x)

Γ′(1) .
However, the issue of wastage of resources arises again,

as some packets that reach relay are never going to be used.
Namely, any kind of centralized coordination which would
guarantee that only Si, i = 1, 2, . . . , N sources transmit
at each time slot, where Si are independent realizations of
random variable S on Nt with distribution Γ(x), would
preclude the need for distributed LT codes, as it could as
well be used to contruct an exact Soliton-distributed LT code
across all the sources. Nonetheless, we believe our setting to
be justified as it is consistent with digital fountain paradigm,
which penalizes reception rather than transmission of data
[13]. The following example illustrates a decentralized and
asynchronous data dissemination scenario taking advantage of
selective combining.
Example 1. Consider an SDLT(Γ(x), {Φi(x)}t

i=1, t, k) sce-
nario, where t sources are continually broadcasting data to a
large number r >> t of relays via lossy links. As all incoming
packets are equally important descriptions of its source, a relay
can tune into a desired number of ongoing broadcasts at any
time, and can combine incoming packets from different time
slots, when a packet loss has occurred.
The next example compares two extreme cases of our

setting, which assume encoding either at the sources or at
the relay, but not both.
Example 2. Consider a network of t sources, each containing
an independent data set of k packets. Assume that relay is able
to receive packets from different sources at a single time slot,
but may transmit only single packet per time slot. Consider
two following coding scenarios:
• Coding at sources - SDLT(x, Φ(x), t, k): At each time
slot, randomly selected source creates one coded packet
using LT(Φ(x), k) and transmits it to the receiver,
whereas relay simply forwards the coded packet, i.e.,
Γ(x) = x.

• Coding at relay - SDLT(Γ(x), x, t, k): Each source
transmits single, randomly chosen uncoded packet, i.e.,
Φ(x) = x, and relay encodes the incoming sequence of
t packets with an LT(Γ(x), t) to create a coded packet
which is being transmitted to the receiver.

Not surprisingly, for values k = 1000 and t = 10, coding
at relay can exhibit better performance than coding at sources,
as shown in Fig. 1, even though distribution Γ(x) has a very

263

low maximum degree, i.e., t = 10. In simulation we used
robust soliton distribution Φρ(x) with parameters k = 1000,
c = 0.03 and δ = 0.05 [2] for coding at the sources, and
an optimized distribution ΓR(x) described in Section V. In
coding at relay scenario, decoding is performed on a matrix
of size t ·k, instead of t separate decodings on matrices of size
k for coding at sources, since in this case data from different
sources is not being combined. Since k is fairly small, this
brings large difference in performance. However, this example
also motivates us to study the case where both distributions
Φ(x) and Γ(x) are non-trivial, which is the general case we are
interested in. Namely, when t is also small, available degree
distributions Γ(x) have a very low allowed maximum degree
and thus suffer from high error floors. Allowing coding at
both source nodes and relay may help produce higher output
degrees and thus alleviate the error floor but also benefit from
combining data from different sources to produce decoding
problem of larger size.
We may capture asymptotic decoding performance of se-

lective distributed LT codes at the receivers by AND-OR
formulae given in the following lemma.

Lemma 3. The erasure rate of an SDLT(Γ(x), Φ(x), t, k), as
k → ∞, is given by y = liml→∞ yl, where yl is given by:

y0 = 1 (7)
yl = exp (−ᾱφ(1 − yl−1)γ (Φ(1 − yl−1))) ,

where ᾱ = Γ′(1)Φ′(1)(1 + ε) is the average input degree
on the decoding graph.

Proof: The proof follows closely from Lemma 2. On
decoding graph G choosing a neighbour f to a random input
node a in a random source i is equivalent to choosing a
neighbour to a random source node i on factor graph H. This
node has degree s inH with probability γs, and averaging over
γ(x) gives (7), as long as we can prove that input degrees on
the decoding graph are Poisson distributed with mean ᾱ. Now,
in each graph Gi, degree of an input node is D ∼ Poisson(α),
where α = Φ′(1)t(1 + ε). Selectively combining incoming
packets at the relay is actually thinning [12] of D since each
edge connected to an input node is going to be transferred to
graph G with probability β

N
, where β = Γ′(1)k(1 + ε) is the

average source node degree in H. Thus, in G, degree of an
input node is

D̄ ∼
D∑

i=1

Xi, (8)

whereX1, X2, . . . , XD are i.i.d. Bernoulli(β
N

) variables. Since
thinning conserves the Poisson law, D̄ ∼ Poisson(ᾱ), where
ᾱ = αβ

N
= Γ′(1)Φ′(1)(1 + ε), which proves the claim.

We note that this lemma allows simple linear programming
optimization of distribution Γ(x) in case when Φ(x) is apriori
known, and these linear programs are given in Appendix.
Let us now consider the code ensemble Fk =

LT(Γ(Φ(x)), tk) over entire set of tk packets from all the

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

10−3

10−2

10−1

100

overhead ε

pa
ck

et
 e

ra
su

re
 ra

tio

SDLT(ΓR(x), x, t=10, k=∞)

SDLT(Γ*(x), Φ*(x), t=10, k=∞)
SDLT(ΓR(x), x, t=10, k=103)

SDLT(Γ*(x), Φ*(x), t=10, k=103)
LT(Γ*(Φ*(x)), k=104)
SDLT(x, Φρ(x), t=10, k=103)

Fig. 1. Simulation results for various selective distributed LT scenarios.

sources. Its edge perspective output degree distribution is

ω(x) =
Γ′(Φ(x))Φ′(x)

Γ′(1)Φ′(1)
(9)

= φ(x)γ(Φ(x)).

The average input degree is ᾱ = Γ′(1)Φ′(1)(1 + ε) and thus
its AND-OR formula reads

y0 = 1 (10)
yl = exp (−ᾱφ(1 − yl−1)γ (Φ(1 − yl−1))) ,

which is exactly the same as (7). Thus, we have proven the
following theorem.

Theorem 4. The performance of a selective distributed LT
code ensemble SDLT(Γ(x), Φ(x), t, k) is identical to the
performance of an LT code ensemble LT(Γ(Φ(x)), tk), as
k → ∞.

This theorem answers one of the questions posed in the
discussion of [5] of whether distributed LT code design should
target Soliton-like output degree distributions in the resulting
bitstream from the relay. The answer is, at least in the
asymptotic regime, yes.

V. ASYMPTOTICALLY GOOD PAIRS OF DISTRIBUTIONS
We used linear program LP B’ in Appendix to obtain good

degree distribution pairs (Γ(x), Φ(x)) for selective distributed
LT coding scenario with t = 10 sources. In all linear programs,
the value of the desired erasure ratio was fixed to δ = 0.02,
and we ran linear programs for various values of α in order
to find optimum in terms of code overhead. Two examples
of such distributions are given in Table I. For trivial case
Φ(x) = x, i.e., coding only at the relay, not surprisingly, ob-
tained distribution ΓR(x) resembles a Soliton-like distribution.
On other hand, through extensive search we obtained a good
value of distribution Φ(x) for non-trivial case and optimized
Γ(x) accordingly. The pair of distributions (Γ∗(x), Φ∗(x)) we
obtained is given in the table and is superior to coding only at
the relay both asymptotically, which is illustrated by the value

264

of objective function 1 + ε∗ given in the Table I and in finite
length k = 1000 as demonstrated on Figure 1.
We have also simulated LT(Γ∗(Φ∗(x)), 10000) performance

and as demonstrated on Figure 1, its packet erasure ratio
is close to that of SDLT(Γ∗(x), Φ∗(x), 10, 1000) as pre-
dicted by Theorem 4. Note that the asymptotic packet
erasure ratio of LT(Γ∗(Φ∗(x)), k) is identical to that of
SDLT(Γ∗(x), Φ∗(x), 10, k).

TABLE I
PAIRS (Γ(x),Φ(x))

ΓR,1 ΓR,2 ΓR,3 ΓR,4 ΓR,10 α
0.0048 0.4422 0.3075 0 0.2455 4.39
Φ1 1 + ε∗

1 1.0290
Γ∗

1
Γ∗

2
Γ∗

3
Γ∗

4
Γ∗

10
α

0.7741 0.0025 0.1490 0.0026 0.0718 4.78
Φ∗

1
Φ∗

2
Φ∗

3
Φ∗

4
1 + ε∗

0.05 0.5 0.4 0.05 0.9983

ACKNOWLEDGEMENTS

D. Sejdinović and R. Piechocki would like to thank Toshiba
Telecommunications Research Laboratory and its directors
for supporting this work. The authors would like to thank
Mohamed Ismail for his advice with this research and the
anonymous reviewers for their insightful comments.

REFERENCES

[1] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data,” Proc. of the ACM
SIGCOMM 98, pp. 56–67, Vancouver, Canada, Sept. 1998.

[2] M. Luby, “LT Codes,” Proc. of the 43rd Annual IEEE Symp. Foundations
of Computer Science (FOCS), Vancouver, Canada, Nov. 2002.

[3] A. Shokrollahi, “Raptor Codes,” IEEE Trans. Info. Theory, vol. 52, No.
6, pp. 2551–2567, June 2006.

[4] 3GPP, “3GPP TS 26.346 V7.0.0, Technical Specification Group Services
and System Aspects; Multimedia Broadcast/Multicast Service; Protocols
and Codecs”, Sept. 2007.

[5] S. Puducheri, J. Kliewer, T. Fuja, “The Design and Performance of
Distributed LT Codes”, in IEEE Trans. Info. Theory, vol. 53, no. 10,
pp. 3740–3754, Oct. 2007.

[6] T. Richardson, R. Urbanke, Modern Coding Theory, Cambridge Univer-
sity Press, 2008.

[7] M. Luby, M. Mitzenmacher and A. Shokrollahi, “Analysis of Random
Processes via And-Or Tree Evaluation,” Proc. of the 9th Annual SIAM
Symp. on Discrete Algorithms (SODA), pp. 364–373, San Francisco,
USA, Jan. 1998.

[8] R. Karp, M. Luby, A. Shokrollahi, “Finite Length Analysis of LT
Codes”, Proc. of IEEE International Symposium on Information Theory
2004, Chicago, USA, June 2004.

[9] S. Sanghavi, “Intermediate performance of rateless codes”, IEEE Infor-
mation Theory Workshop 2007, Tahoe, USA, Sept. 2007.

[10] N. Rahnavard, B. N. Vellambi, F. Fekri, “Rateless Codes With Unequal
Error Protection Property” IEEE Trans. Info. Theory, vol. 53, No. 4,
pp. 1521–1532, Apr. 2007.

[11] D. Sejdinović, D. Vukobratović, A. Doufexi, V. Šenk, R. Piechocki, “Ex-
panding window fountain codes for unequal error protection”, in Proc.
of the 41st Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, Nov. 4-7, 2007.

[12] A. Renyi, “A characterization of Poisson processes,” Magyar Tud. Akad.
Mat. Kutaló Int. Közl., vol. 1, pp. 519-527, 1956.

[13] S. Shamai, E. Telatar, S. Verdú, “Fountain Capacity”, IEEE Trans. Info.
Theory, vol. 53, no. 11, pp. 4372–4377, Nov. 2007

APPENDIX
When optimizing degree distributions for LT codes, there

are two different approaches and both include the transforma-
tion of AND-OR formulae 1 into an appropriate linear program
by discretizing intervals of erasure rates. In all linear programs
below, 0 = x1 < x2 < · · · < xm = 1 − δ are m equidistant
points on [0, 1− δ], δ is the desired erasure ratio, and dmax is
the maximum degree of the degree distribution which is being
optimized. Moreover, all the variables (to be determined) are
non-negative and sum to 1.
The first linear program (LP A) minimizes average degree

of distribution, which is required to reach the desired perfor-
mance at a fixed overhead ε:

LP A : min

dmax∑
d=1

dΩd (11)

dmax∑
d=1

dΩdx
d−1
i ≥

− ln(1 − xi)

1 + ε
, i ∈ 1, 2, . . . , m

The second linear program (LP B) fixes the average input
node degree α = Ω′(1)(1 + ε) and minimizes the code
overhead such that the desired erasure ratio δ is achieved. The
code overhead can be expressed in terms of edge perspective
distribution ω(x) as 1+ε = α

∑
d

ωd

d
. By appropriately trans-

forming constraints in LP A, new linear program becomes:

LP B : min α

dmax∑
d

ωd

d
(12)

α

dmax∑
d=1

ωdx
d−1
i ≥ − ln(1 − xi), i ∈ 1, 2, . . . , m

Note that Ω(x) used in encoding of packets can be deter-
mined from ω(x) as

Ω(x) =

∫ x

0
ω(z)dz∫ 1

0 ω(z)dz
. (13)

In an SDLT scenario, when we optimize degree distribution
Γ(x) at the relay, when distribution Φ(x) at the sources is
fixed, we can use one of the following two linear programs
LP A’ and LP B’, analogous to LP A and LP B.

LP A′ : min

dmax∑
d=1

dΓd (14)

dmax∑
d=1

dΓdΦ(xi)
d−1 ≥

− ln(1 − xi)

(1 + ε)Φ′(xi)
, i ∈ 1, 2, . . . , m

LP B′ : min
ᾱ

Φ′(1)

dmax∑
d=1

γd

d
(15)

dmax∑
d=1

γdΦ(xi)
d−1 ≥ −

ln(1 − xi)

ᾱφ(x)
, i ∈ 1, 2, . . . , m

265

