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Abstract—In this contribution, we consider the application of
Digital Fountain (DF) codes to the problem of data transmission
when side information is available at the decoder. The side infor-
mation is modelled as a “virtual” channel output when original
information sequence is the input. For two cases of the system
model, which model both the virtual and the actual transmission
channel either as a binary erasure channel or as a binary input
additive white Gaussian noise (BIAWGN) channel, we propose
methods of enhancing the design of standard non-systematic DF
codes by optimizing their output degree distribution based on the
side information assumption. In addition, a systematic Raptor
design has been employed as a possible solution to the problem.

I. INTRODUCTION

Digital fountain (DF) codes are a universal, capacity-
approaching Forward Error Correction (FEC) solution for data
transmission over lossy networks. The first practical DF codes
were Luby-Transform (LT) codes [1], whereas their extension,
Raptor codes [2], represent a state-of-the-art DF solution for
lossy transmission with excellent performance and linear en-
coding/decoding complexity. A significant amount of work has
been done to extend the methods of DF codes for transmission
over noisy channels [3], [4]. In this paper we consider another
possible application of DF codes, which is set in the realm of
distributed joint source-channel coding (DJSCC). We assume
that the side information is available at the decoder, and that
this side information is modelled as the output of a “virtual”
channel when the original information sequence is its input.
The DF encoding methods which incorporate the presence
of decoder side information in their design are explored and
studied. The aim of these encoding methods is to provide both
the distributed source compression scheme and the channel
coding scheme with a single DF code.

The distributed source coding part of the DJSCC problem,
concerned with the separate encoding and joint decoding of
two correlated sources, was originally studied by Slepian
and Wolf [5], who produced a celebrated result that separate
compression (Slepian-Wolf Coding - SWC) suffers no rate
loss compared to the case of joint compression. The special
case when one of the sources is fully known at the decoder
(decoder side information) and its generalization, Wyner-Ziv
Coding, have since attracted a lot of interest due to their
practical significance. The usual means for constructing a
binning scheme for SWC uses the syndrome-based encoder.
The syndrome-based encoder for the SWC of the information

sequence x having length k forms a (k − r)-length syndrome
vector s = xHT, based on a good linear (k, r)-channel code
with parity-check matrix H. Another equivalent approach uses
parity-based binning, which employs a systematic (k + t, k)-
channel code and transmits the t-length parity vector, where
t = k − r. In both cases, the Slepian-Wolf theorem requires
that t ≥ kH(X|Y ), where H(X|Y ) is the entropy of source
X conditional on decoder side information Y . The syndrome-
based approach is a better choice when the transmission
channel is noiseless, due to an increase in complexity when
parity-based binning is used. However, if the transmission
channel is noisy, the parity-based binning may be beneficial
in some cases. Namely, separate source-channel coding would
utilize a syndrome-based encoder to create a syndrome vector
and then concatenate a channel code to protect syndrome
symbols. On the other hand, distributed joint source-channel
design uses the parity-based approach to combine two channel
codes, one for SWC and another for channel coding into a
single channel code. The advantages of the joint design in
comparison with the separate design when DF codes are used
have been noted in [6] and [7].
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Fig. 1. System model

The system model we are considering is presented in figure
1. The binary information source X is correlated with decoder
side information Y via a “virtual” correlation channel CV . The
encoder processes an information sequence x = (x1, . . . , xk)
of length k at a time, produces the potentially infinite binary
stream z = (z1, z2, . . .), z = fenc(x), of the encoding symbols
and transmits it through an “actual” transmission channel CA.
The channel outputs are depicted as the new “noisy” stream
w = (w1, w2, . . .). The decoder picks up any t channel
outputs w∗ = (wi1 , wi2 , . . . , wit

), aware of their coordinates
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vector i = (i1, i2, . . . , it), where t ≥ kH(X|Y )/Cap(CA).
By taking advantage of the side information sequence y =
(y1, . . . , yk) corresponding to x, the information sequence
x′ = fdec(w∗, i,y) is decoded. The objective is to devise
the encoding strategy such that it is possible to have the true
rate t/k close to the optimal value equal to the Slepian-Wolf
limit in the noisy channel case, H(X|Y )/Cap(CA), and to
still allow for the high probability of successful decoding, i.e.,
of x′ = x.

We consider two approaches of application of DF codes for
the proposed problem. The first one deals with the standard
non-systematic DF code as a single code for source and
channel coding and its enhancement based on the assumption
that the decoder side information is present. The second one
employs a systematic Raptor design as the possible solu-
tion. Both approaches can also be used as the basis for the
Combined Incremental Redundancy Hybrid ARQ (Automatic
Repeat reQuest) - IR-HARQ schemes which are studied in [8].

II. A SIMPLE “ERASURES-ONLY” SCENARIO

One of the simplest nontrivial cases described by our model
is the one where both the actual and the virtual channel
are binary erasure channels. This is the case where the side
information available at the decoder is given by a certain
portion of the original information sequence, i.e., the side
information is the output of a binary erasure channel with
a fixed erasure probability p. One can think of this case as of
a scenario in which the receiver has succesfully decoded only
a part of the data prior to the failure of previous transmission.
The previous transmission may have used a classical DF code
for erasure protection, and the obvious solution would be
just to increment redundancy by transmitting additional DF
encoding symbols. However, the failure of decoding may have
fully erased all the supplementary data, e.g., the decoding
graph and previously received encoding symbols, due to the
limited buffer size, and thus continuation of the same encoding
procedure is by no means advisable. On the other side, the
transmitter has no knowledge about which part of the data has
already been decoded, but it is able to estimate how much
of the data has already been decoded and needs to adapt its
encoding procedure to take the advantage of the portion of data
available at the decoder, i.e., the decoder side information.

In the remainder of this section we investigate the possible
solutions for the nearly optimal transmission based on the
DF code design which makes use of these assumptions. This
scenario also provides great insight into more realistic case
when both the actual and the virtual channels are, in fact,
noisy, which we consider in section III.

A. Universal systematic Raptor solution

The “erasures-only” scenario is not different from the
transmission over binary erasure channel, assuming that the
systematic symbols are sent first and the erasure rate during
the transmission of systematic symbols can be estimated at
the encoder. Hence, a universal systematic rateless code for
transmission over an erasure channel would be sufficient to

optimally solve the proposed problem of DJSCC. Systematic
Raptor design was discussed in [2] and it has been adopted
in practical applications like Multimedia Broadcast/Multicast
Services (MBMS) within 3GPP [9], amongst others. In this
design, the decoder does not decode the original information
sequence x but the intermediate symbols x̄ instead, related to
the information sequence by

G{1:k}
LT x̄T = x, (1)

where G{1:k}
LT represents the first k rows of the LT generator

matrix. The encoder needs to calculate intermediate symbols
x̄ for each information sequence via Gaussian elimination,
whereas the decoder has an additional encoding step upon the
succesful decoding in order to calculate the actual information
sequence by multiplying intermediate symbols x̄ with the LT
generator matrix. The universality of Raptor codes for erasure
channels implies that application of the systematic Raptor
codes to the proposed problem will bring nearly optimal
design. However, our aim in the rest of this section is to
study the limitations of the simpler, i.e., non-systematic DF
codes when applied to the proposed “erasures-only” problem
of DJSCC. The advantage of the possible applicable solution
based on standard non-systematic DF codes is the lower
complexity and simplicity of design, since systematic Raptor
codes require significant amount of preprocessing as well as
Gaussian elimination to be performed at the transmitter for
each transmitted block [9]. Another advantage of the solution
based on standard non-systematic DF codes may arise in
the practical scenario of incrementing redundancy, which we
discussed above. Namely, the encoder needs only to modify its
DF output degree distribution in order to adapt to the failure
of decoding at the receiver side.

B. Encoding with the non-systematic fountain code

Let us consider the case when the encoding method employs
a simple LT code with an output degree distribution Φ. During
the transmission, the encoder samples the distribution Φ in
order to generate as many encoding symbols as necessary until
the decoder picks up t ≥ pk correctly received symbols, where
p is the channel erasure probability. Note that pk symbols
correspond to the optimal compression rate, since H(X|Y ) =
p. The receiver forms the decoding graph based on the received
encoding symbols and removes the known, previously decoded
input nodes from the graph, based on the symbols available
from the side information, correspondingly updating the output
nodes. A belief propagation decoding for the erasure channel,
i.e., graph pruning procedure, can then be performed.

Once removal of the already known input nodes has oc-
curred, the output degree distribution changes considerably,
which influences erasure correction performance. However,
since the source symbols are chosen uniformly after the degree
of an output node has been selected, one can relate the
“starting” degree distribution Φ to the degree distribution after
removal of the known source nodes from the decoding graph.
Let Φ(x) =

∑n
d=0 Φdx

d and Ω(x) =
∑n

d=0 Ωdx
d be the

generating polynomials of the output degree distribution used
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at the encoder (incoming degree distribution) and the output
degree distribution after removal of the known source nodes
from the decoding graph (resulting degree distribution). The
probability that an arbitrary output node has degree i after
removal of the known source nodes conditioned on its degree
before removal being j ≥ i is clearly

(
j
i

)
(1 − p)j−ipi. Thus,

the relation between the distributions Φ and Ω is given by the
following set of linear equations

Ω0 = Φ0 + Φ1(1 − p) + Φ2(1 − p)2 + · · · + Φk(1 − p)k

Ω1 = Φ1p + Φ2

(
2
1

)
(1 − p)p + · · · + Φk

(
k

1

)
(1 − p)k−1p

Ω2 = Φ2p
2 + · · · + Φn

(
k

2

)
(1 − p)k−2p2

· · · = · · ·
Ωk = Φkpk. (2)

This set of linear equations need not have a positive solution,
i.e., the ensemble of distributions {Φ(i)}i∈N, such that the
expected ensemble of distributions {Ω(i)}i∈N after removal of
the known source nodes is the one that achieves the capacity
in the sense of DF codes, need not exist. However one can try
to look for incoming distributions Φ whose resulting distribu-
tions are “close” to the asymptotically optimal output degree
distributions in some sense, for example via minimization of
the sum of the squares of the differences between coordinates
of distribution (nonnegative least squares problem).

Another approach would be to devise methods of optimizing
the incoming distributions through its relation with the result-
ing distribution. Namely, in generating polynomial notation,
(2) gives the relation

Ω(x) = Φ(1 − p + px), (3)

which allows for the simple analysis of the performance of
distribution Φ in terms of the and-or lemma and density evolu-
tion [10]. The corresponding density evolution of asymptotic
bit error rate (BER) in terms of the distribution Φ can be
calculated by using the relation (3) and is given by

y0 = 1
yl = e−(1+ε)pΦ′(1−pyl−1), l ≥ 1, (4)

where ε is the code overhead.
It should be noted that this density evolution gives the

asymptotic BER across the input symbols unknown at the de-
coder, and the actual bit error rate across the entire information
sequence is given by ŷ∞ = p · y∞, where

y∞ = lim
l→∞

yl. (5)

C. Construction and asymptotic analysis of incoming distri-
butions

Asymptotically good Soliton-like DF output degree distri-
bution [2] is given by

Ωε(x) =
1

µ + 1

(
µx +

D∑
d=2

xd

(d − 1)d
+

xD+1

D

)
. (6)

For any fixed overhead ε > 0, this distribution provides for
recovering at least (1−δ)k input symbols from any set of (1+
ε)k output symbols, where k is the length of the information
sequence, δ = (ε/2)/(1 + 2ε), µ = ε + ε2 and D = �2(1 +
2ε)/ε�

The system (2) cannot be solved for Φ in case of the
distribution from (6), for any values of ε and p of interest.
For example, ΦD ≥ 0 would imply 1 − p ≤ 1

D2 , which does
not have any practical sense. However, one can look for such
an output degree distribution Φ, for which Φ(1−p+px) closely
resembles Ωε(x), using the nonnegative least squares method.
In case of ε = 0.03 and p = 0.3, the custom degree distribution
Φε was obtained by using the nonnegative least squares
method. This distribution is quite different from Soliton-like
distributions and the sampling of this distribution produces
more than 80% of encoding symbols with degree 8. Figure
2 shows how well the resulting distribution Φε(0.7 + 0.3x)
approximates Ωε in terms of the density evolution estimates
of the bit error rate. We can see that the imperfection of
approximation introduces a significant additional delay, i.e.,
the knee in the BER curve occurs at much higher overhead
than that of the distribution (6).
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Fig. 2. The approximation of the asymptotically good distribution (6) by the
nonnegative least squares method.

A different approach yields asymptotically better distribu-
tions Φ. From the generalized density evolution for the side
information LT codes (4), we obtain the condition

Φ′(x) ≥ − 1
p(1 + ε)

ln(
1 − x

p
), x ∈ [1 − p, 1 − pδ], (7)

which needs to be satisfied if Φ should provide for the
decoding (1 − δ)t portion of data after reception of (1 + ε)t
output symbols, when k → ∞, where t ∼ pk is the number
of unknown source symbols. When p = 1, one can find such
a distribution Φ = Ω, for any pair ε > 0, δ > 0. However,
we conjecture that this is not the case for p < 1, since we
have found by extensive simulation that for the fixed value
of ε there is a certain threshold value of δ0, such that the
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overheads 3-7%
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Fig. 4. The precoded DF code (Raptor) with modified incoming distribution

problem (7) stays unsolvable when δ < δ0, no matter how
large the maximum degree of the distribution Φ is. Figure
3 shows the asymptotic analysis of the bit error rate for the
best distributions found at various overheads. We have fixed
the overhead value, and then searched for the lowest possible
δ such that (7) becomes feasible. For that δ, by means of
linear programming (discretization of the segment), we have
found the distributions Φ with minimum average degree. This
method can be naturally extended to the finite length design,
similarily as in [3], based on setting lower bounds on the
expected size of the input ripple [11]. Table I shows four
distributions calculated in this way.

By concatenating an LT code with a custom distribution
derived by the optimization procedure as described above to
a very high-rate hybrid LDPC-Half precode, constructed as
in [9], we have implemented a non-systematic solution to
the ’erasures-only’ problem. The length of the information
sequence was set to k = 40000 and virtual channel erasure

TABLE I
OPTIMIZED DEGREE DISTRIBUTIONS FOR VARIOUS BLOCK LENGTHS

d Φd d Φd d Φd d Φd

9 0.7509 9 0.6711 9 0.6989 9 0.6689
10 0.1471 10 0.2305 10 0.2016 10 0.2330
63 0.0722 67 0.0647 63 0.0735 63 0.0782

141 0.0243 118 0.0074 158 0.0240 212 0.0032
142 0.0055 119 0.0263 159 0.0020 213 0.0168

k ε k ε k ε k ε
10000 0.1 20000 0.09 40000 0.08 ∞ 0.06

rate was p = 0.3. Note that the precoding somewhat changes
the optimization procedure since equation (3) now reads

Ω(x) = Φ(s(1 − p) + (1 − s + sp)x), (8)

where s is the precode rate and density evolution-based
constraints (7) are updated correspondingly. Figure 4 depicts
the histogram of the numbers of received symbols necessary
for succesful decoding for 500 transmission trials. On average,
13750 symbols were required, which is about 34.4% of the
length of information sequence, compared to the optimal 30%,
i.e., 12000 symbols.

III. BIAWGN CASE - SOFT INFORMATION DECODING

In this section we assume that the binary information
source X over the alphabet {−1, 1} (standard BPSK mapping
0 → 1, 1 → −1 is used) and the soft side information
Y are correlated via Y = X + N , where N is a Gaus-
sian random variable of zero mean and variance σ2

V . This
means that y = BIAWGNσV

(x), where BIAWGN stands
for the binary input additive white Gaussian noise channel
(this is the virtual channel). Note that in this case we have
H(X|Y ) = 1 − Cap(BIAWGNσV

), where the capacity of
BIAWGN channel of noise variance σ2 [3] is given by

Cap(BIAWGNσ) =

1 − 1
2
√

πm

∫ ∞
−∞ log2(1 + e−x)e−

(x−m)2

4m dx, (9)

where m = 2/σ2.

A. Encoding with the non-systematic fountain code

Similarily as in the “erasures-only” case, when using a
simple non-systematic fountain code, e.g., an LT code with
distribution Ω, the decoder embeds the side information di-
rectly into the decoding graph. Here, side information is
embedded into the decoding graph directly at the input nodes
via intrinsic soft information, i.e., log-likelihood ratios based
on the output of the virtual BIAWGN channel. Therefore,
even if the transmission channel is assumed to be a noiseless
or an erasure channel, belief propagation decoding for this
scenario is no longer a simple graph pruning procedure, due
to the presence of soft information at the input nodes. We may
further assume that the transmission occurs through another
BIAWGN channel, with a noise variance σ2

A and in addition,
output nodes may contain soft information based on the actual
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channel output. The more general sum-product algorithm may
be employed for this kind of construction, with the soft
information present at both sides of the decoding graph. In
the case when a precode is used (Raptor-like scenario), parity
symbols are initialized to have zero log-likelihood ratios,
since no side information is directly available about the parity
symbols and parity checks are initialized to have log-likelihood
ratios equal to +∞, since they are deterministically equal
to zero. In [6], precisely this kind of design with irregular
repeat accummulate (IRA) [12] precoding was employed for
the joint-source channel coding scenario using non-systematic
Raptor codes with a classical Soliton-like output degree dis-
tribution. In the rest of this subsection, we will show how to
enhance the design of the output degree distribution under the
assumption that decoder side information is available.

The optimization of fountain code output degree distribution
for the BIAWGN channel when soft information is not present
at the input nodes was treated in [3] by using a refined
Gaussian approximation [13]. This optimization is based on
the simple rationale that the means of the messages transmitted
from the input nodes to the output nodes should keep on
increasing under the usual all-zeroes information sequence
assumption. The linear program used for optimization carries
the constraints

α
∑

d

ωdfd(µ) > µ, µ ∈ (0, µmax) (10)

where ω(x) = Ω′(x)
Ω′(1) is the output edge degree distribution

(the proportion of incoming messages which carry the mean
fd(µ)), α is the average input degree and fd(µ) is the refined
mean [3] of the messages passed from the output node of
degree d when the mean of the incoming messages is µ.

Note that the absence of the soft information implies that
the starting mean of the messages sent from the input nodes
to the output nodes has to be zero. However, in the case when
there is soft information available also at the input nodes, the
constraints imposed by (10) are more strict than it is necessary.
If we assume that the information sequence is an all-zeroes
message, then soft side-information available (modelled by a
virtual correlation BIAWGN channel) induces that the mean
of the messages sent from the input nodes to the output nodes
at the first iteration of the message-passing algorithm is µV =
2/σ2

V , where σ2
V is the noise variance of the virtual channel.

Hence, means should keep on increasing only on the interval
(µV , µmax). Also, the input node-update is now different since
it needs to take intrinsic soft information into account. The new
“mean-increase” condition is given by:

µV + α
∑

d

ωdfd(µ) > µ, µ ∈ (µV , µmax). (11)

We have adopted this new set of linear constraints in order
to optimize output degree distributions under the assumption
that side information is present at the decoder, similarily as in
the “erasures-only” case.
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Fig. 5. The comparison of different DJSCC Raptor schemes, noiseless
transmission.

B. Encoding with a Systematic Raptor

One can also employ the systematic Raptor codes [2], [9] for
the DJSCC design in the case when virtual channel is modelled
as a BIAWGN channel. The stream z in this case consists
only of the non-systematic Raptor encoding symbols and the
side information is embedded into the decoding graph at the
output nodes corresponding to the systematic Raptor encoding
symbols, since soft information about the systematic Raptor
encoding symbols ia already available due to decoder side
information. The nodes corresponding to the non-systematic
Raptor encoding symbols may contain soft information based
on the actual channel output. Although the application of the
systematic Raptor codes to this kind of DJSCC problems
seems straightforward, practical system proposals, as in [6],
use a non-systematic version of Raptor codes, arguably due to
the simpler design, and enhance the code design differently,
by introducing bias towards choosing parity symbols when
forming the Raptor encoding symbols.

C. Simulation results

Three different Raptor codes for DJSCC, non-systematic
Raptor code with a classical Soliton-like output degree dis-
tribution, non-systematic Raptor code with an output degree
distribution optimized as prescribed in subsection A, and
systematic Raptor code, were simulated under the assumption
that the virtual channel is modelled as the BIAWGN channel,
and the results are presented in figures 5 and 6. The horizontal
axis represents the signal-to-noise ratio (SNR) of the virtual
channel, which is related with the channel noise variance
by SNR = 10 log10

1
σ2 . The vertical axis represents the

average joint source-channel code rate necessary for succes-
ful decoding, i.e., t/k, where t is the average number of
received encoding symbols at the decoder. Figure 5 shows
the comparison of different Raptor schemes for the case of
distributed compression, i.e., when the actual transmission
channel is noiseless, whereas in figure 6 the actual channel
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Fig. 6. The comparison of different DJSCC Raptor schemes, transmission
SNR is 3 dB.

is also modelled as the BIAWGN channel with SNR set
to 3 dB. The systematic Raptor design was adopted from
application layer FEC scheme described in [9]. The output
degree distribution Ω we obtained as prescribed above is

Ω(x) = 0.0954x5 + 0.1192x6 + 0.1121x7 +
0.12938x8 + 0.1054x9 + 0.0807x10 +
0.1109x11 + 0.2470x100. (12)

The assumed SNR of the virtual channel during this optimiza-
tion was also set to 3 dB.

One can note the poor performance of applying the non-
systematic Raptor code with a classical Soliton-like distribu-
tion to the proposed problem of DJSCC and considerably
better performance of the systematic Raptor code scheme.
However, non-systematic Raptor code with optimized Ω does
approach the performance of the systematic Raptor code
scheme, but is also sensitive to the assumption on the value
of the SNR of the virtual channel, since this assumption is a
crucial part in the distribution design.

IV. CONCLUSION

The study of the design of the DF codes based on the
assumption that side information is available at the decoder is
presented. We assume that side information is modelled as the
“virtual” channel output when original information sequence is
its input. We investigate two cases, the simple “erasures-only”
case when both the virtual and the actual transmission channel
are binary erasure channels and the more realistic case when
both channels are BIAWGN channels. While in both cases
a solution based on systematic Raptor codes seems the most
advantageous, its complexity and intricate design motivate us
to study the limitations of the non-systematic Raptor codes
when applied to these DJSCC problems. We show how to
improve their performance by optimizing the output degree
distribution based on the assumption that the decoder side

information and the estimates of the correlation between the
source and the decoder side information are available.
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