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Abstract—In this contribution, duals of fountain codes are
introduced and their use for lossy source compression is investi-
gated. It is shown both theoretically and experimentally that the
source coding dual of the binary erasure channel coding problem,
binary erasure quantization, is solved at a nearly optimal rate
with application of duals of LT and raptor codes by a belief
propagation-like algorithm which amounts to a graph pruning
procedure. Furthermore, this quantizing scheme is rate adaptive,
i.e., its rate can be modified on-the-fly in order to adapt to the
source distribution, very much like LT and raptor codes are able
to adapt their rate to the erasure probability of a channel.

I. INTRODUCTION

Whereas the use of sparse graph codes equipped with a
belief propagation decoding apparatus in the pure channel
coding problem is well understood and characterized [1], [2],
their assumed potential for lossy source coding has not yet
been fully utilized. The structure of the posterior distribution
in a lossy compression problem presents substantial challenges
for the message-passing sum-product algorithms used in the
pure channel coding problem [3], which suggests that novel
algorithmic approaches may be required. Advances in the
statistical physics community and their work on efficient
algorithms for k-SAT problems [4],[5],[6], namely the survey
propagation (SP) algorithm, inspired investigation of SP-based
algorithms for lossy source compression with LDGM (low
density generator matrix) codes [7], which arise naturally
as duals of LDPC (low density parity check) codes. The
use of LDGM codes was instigated by their rate-distortion
bound saturation for the binary erasure quantization problem,
the source coding dual of the binary erasure channel coding
problem, which was noted in [8]. Our proposal throughout
this paper is to extend a sparse graph lossy source coding
framework to the fountain coding paradigm [9], [10], [11] and
duals of fountain codes. Fountain codes disregard conventional
code modelling with a fixed code rate. Instead, their theory
provides the framework for encoder to spray a potentially
infinite stream of encoding symbols across the channel by
continually generating random equally important descriptions
of the source. These codes lend themselves to theoretical
study and show high potential for practical realizations in
broadcasting applications. The property of ratelessness, i.e.,
to adapt their code rate on the fly, makes them inherently ad-
justable to different and varying channel conditions, and thus

an attractive solution for wireless and mobile communication
systems. By applying duals of fountain codes instead of duals
of LDPC codes for lossy source coding problem, possibility
to produce rate adaptive lossy compression schemes seems
plausible. A number of communication systems which utilize
lossy compression techniques may benefit from such a coding
apparatus able to adapt in order to reach desired distortion at
a near optimal rate. Our preliminary investigations, presented
here, did confirm that a near optimal rate adaptive binary
erasure quantization is possible with duals of fountain codes.

II. DUALITIES IN SPARSE GRAPHS

Both the channel decoding and source encoding, i.e., quan-
tization, are essentially a search process over an exponentially
large set of codewords. Thus, we must capitalize on a special
structure that facilitates channel decoding and source encod-
ing operations if we are to devise practical corresponding
techniques. A conceptually simple rationale motivates as to
study sparse graphical modelling of codes, which may be
able to reduce computational complexity associated with these
encoding/decoding methods. The code structure of a code C
is conveniently captured by a bipartite graph GH based on
its parity check matrix H . It is a graph with two classes
of nodes, one of them representing projections of codeword
c ∈ C to its coordinates, i.e., the bits of the codeword,
and the other one representing parity check equations that
codewords satisfy. This is a special type of a factor graph
[12], which is commonly used in mathematics to represent a
factorization of a function such that each factor is dependant
only on the subset of the set of possible function arguments.
In that way, the computation of the factorized function may be
performed more efficiently by exploiting the distributive law.
Alternatively, code structure may also be captured by another
bipartite graph GG, based on the code’s generator matrix G.
This is a direct representation of the specific mapping

φ : F
k
2 → F

n
2 , (1)

which describes an actual encoding procedure, i.e., an iso-
morphic assignment of a codeword c = φ(x) ∈ C to the
message block - vector x ∈ F

k
2 - which is assumed to

represent information content. Two classes of nodes in a
G-representation are (input) bits of the message block and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1



(coded) bits of the codeword. Each coded bit is a linear
combination of a number of input bits, and this is thus yet
another realization of a factor graph. We take special interest
in those graphical models whose graphical representations
are sparse and thus their sparsity may be capitalized in the
design of efficient decoding algorithms. These are low-density
constructions - codes associated with sparse H-representations
are known as low-density parity-check (LDPC) codes and
those associated with sparse G-representations are known as
low-density generator-matrix (LDGM) codes.

For each binary linear code C, as it is a subspace of vector
space F

n
2 , we may define its dual code C′ as a dual subspace

of F
n
2 , or

C′ = {y ∈ F
n
2 : y · z = 0 ∀z ∈ C}. (2)

If C has dimension k, then its dual code C′ has dimension n−k.
The generator matrix of C is equal to the transpose of parity
check matrix of C′ and vice versa. Thus, if C allows sparse
H-representation (as an LDPC code), it is clear that its dual
code C′ allows sparse G-representation (as an LDGM code)
and that GG(C′) = GH(C). These graphs are equal, however
their interpretation as factor graphs slightly differs. The nodes
which are parity check nodes in GH(C) are input nodes in
GG(C′), and thus the role of the factor and variable nodes in a
graph is exchanged between two classes of nodes in a factor
graph representation of the dual code.

It has been well publicized that source and channel coding
are dual problems (cf. [13] and references therein), both in the
classical and side information cases. Informally, a source en-
coder and a channel decoder have a similar role of “removing
entropy” in these problems. A channel decoder tries to map
a received channel output to a nearest codeword and should
succeed with high probability whenever a received channel
output is within a certain distance D of some codeword c ∈ C
with respect to some metric on a channel output alphabet.
On the other hand, a source encoder quantizes the source to
a nearest codeword c ∈ C and the distance from source to
codeword should with high probability be lower than some
prescribed D for an arbitrary source. In the channel encoding
case, D is the noise induced by the channel and in the source
encoding case, D is the distortion induced by quantizing
the source. Thus it is natural to investigate whether channel
decoders would produce good source encoders. However, this
approach generally fails, and dualizing code structure seems
as the next plausible solution [8].

III. BINARY ERASURE QUANTIZATION AND FOUNTAIN

CODES

One of the simplest channel coding problems is data trans-
mission over a binary erasure channel. A uniformly chosen
message block x ∈ F

k
2 - a symmetric Bernoulli source - is

encoded by a code which eventually leads to transmission of n
coded bits over binary erasure channel of erasure probability e.
This may be achieved either by using a fixed-rate (n, k)-binary
code, or by puncturing a higher-rate or a rateless code (e.g., a

fountain code). Let us desribe the channel output alphabet. It
is an n-word over alphabet A = {0, 1, ∗} where ∗ stands for
“erasure”. Each output bit z is a realization of random variable
Z on A with pZ(0) = pZ(1) = (1 − e)/2 and pZ(∗) = e.

We note that C ⊂ F
n
2 ⊂ An and we introduce a standard

metric on An, with

d(a,b) =
∣∣∣
{

i ∈ {1, 2, . . . , n} : ai �= bi

}∣∣∣, a,b ∈ An. (3)

Since a binary erasure channel does not introduce any bit-flips,
the distance between the channel output and the transmitted
codeword is precisely the number of erasures induced by the
channel.

LDPC codes may be applied to this problem; good LDPC
codes should provide reliable source recovery at a fixed rate
slighly below capacity, i.e.,

1 − e > R = k/n > 1 − e − ε, (4)

in large block lengths k, where ε is a small gap to capacity.
The dual quantization problem, binary erasure quantization

(BEQ) is the one with source Z on A distributed the same
as the output in the channel coding problem. The n-word
should be mapped into a nearest codeword y (code used has
dimension k) with respect to metric d. If we wish to obtain
the minimum distortion of D = e, the random variable Y
describing the coded bits needs to satisfy

pY |Z(y|z) = δ(y − z), z ∈ {0, 1}, (5)

where δ denotes the Dirac δ-function. The rate-distortion
function can thus be calculated by

R(e) = min
pY |Z

I(Y ;Z) (6)

= min
pY |Z

(
1 − e + e

∑
y∈{0,1}

pY |Z(y|∗) log2

pY |Z(y|∗)
pY (y)

)

= 1 − e,

and is achieved by pY |Z(y|∗) = 1/2, for y ∈ {0, 1}. A
good “quantizer” in a similar sense as for the channel codes
would be the one that compresses slightly above rate-distortion
function, i.e.,

1 − e < R = k/n < 1 − e + ε, (7)

in large block lengths k.
One may quickly realize that the attempt to use the same

code structure as for the channel decoding generally fails.
The codewords should be within distance e from any source
and the source will have e erasures on average, with no
guarantee that the non-erased part of the source consitutes
part of the valid codeword. This guarantee can be achieved
only through making the factor graph more dense, i.e., by
guaranteeing that each parity check node would be connected
to at least one erased symbol. This implies that the lower
bound on the average degree of parity node check degrees
would in fact be logarithmic in block length by a simple
“balls-in-bins” argument. This argument supported the claim
in [8] that LDPC codes are generally bad quantizers and
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introduced the use of their duals, LDGM codes, for the source
quantization problems. The authors of [8] have shown that
duals of capacity approaching LDPC channel codes for the
BEC yield minimum rate approaching LDGM codes for the
BEQ problem. Although the practical significance of the BEQ
problem is questionable, this work provided two important
insights into the area, that (1) graphical models may yield near
optimal codes in lossy compression and (2) there may exist
efficient iterative decoding algorithms related to belief propa-
gation (sum-product) for other, more practicable, quantization
problems.

At this point we should mention an existing analogy with
the logarithmic lower bound on the average degree of output
symbols in LT codes [10], derived also by the same “balls-
in-bins” argument. However, although the logarithmic lower
bound is required for a reliable LT code, it was shown in [10]
that there exist output node degree distributions which meet
this lower bound and also approach capacity in large block-
lengths at any erasure probability. These distributions were
named Robust Soliton distributions. Furthermore, in [11], LT
codes were modified by precoding which allowed relaxing the
lower bound on the average degree of output symbols: raptor
codes were born, today’s state-of-the-art rateless channel codes
with a linear encoding/decoding complexity and excellent
performance in practice. Thus, dismissal of LDPC codes for
source quantization problems may be premature. Namely,
LDPC codes would arise naturally as duals of “truncated”
LT codes. Indeed, by setting the distribution of bit nodes in
an LDPC code for erasure quantization to a Robust Soliton
distribution we can guarantee that each parity check node
is connected to at least one bit node carrying an erased
symbol ∗ and thus the non-erased coded bits constitute a
valid part of some codeword. The next step would be to
translate the graph pruning procedure arising from the belief
propagation algorithm for LT codes over erasure channels to
this new dual setting. Furthermore, we will show that this
is possible and in fact the dual algorithm is of the same
complexity and fails/succeeds together with the original graph
pruning procedure. Moreover, one can fix the number of
checks (like fixing the block length in fountain codes) and
attempt quantization on a source of increasing length (like an
output stream of increasing length) at equal intervals - larger
the source, larger the compression rate - and once the required
rate is reached, quantization succeeds.

The rationale lies within the duality of LDPC and LDGM
codes we have discussed above. The decoding graph of a
robust soliton LT code is its sparse G-representation with
a variable number of coded bit nodes. For a fixed erasure
probability e, the number n = n(e) of coded bit nodes
necessary for successful decoding is slightly above the optimal
k/(1 − e). The decoding graph of its dual is an LDPC
decoding graph with a variable number of bit nodes. The
rate duality implies that the BEQ source should not be the
same as the BEC output, but the dual code applies to the
distortion e′ = 1 − e. This is just another way of stating the
noise/distortion parameters at which the pair of channel code

and its dual quantization code are both good. We have

1−e > k/n > 1−e−ε ≡ 1−e′ < (n−k)/n < 1−e′+ε. (8)

Thus, these “dual” LT codes can work on any source Z
with variable e′ and approach the rate-distortion function
in high block lengths with quantization time that scales as
O(k log k). Furthermore, one may apply a raptor-like scenario
and introduce precoding to remove the error floor when
a constant average degree Soliton-like distribution is used.
Precoding simply increases the number of erased symbols -
as it would increase the number of known relations within our
input symbols in a raptor code.

A. Algorithms for LT decoding over a BEC and dual LT
encoding for BEQ

Both LT decoding over a BEC and dual LT encoding
for BEQ are simple graph pruning procedures and can be
implemented such that a number of operations scales linearly
with the number of edges on the decoding graph. Furthermore,
when failure occurs, neither the LT decoder nor the dual LT
encoder needs to start over from the full decoding graph
with a larger number of coded bit or source nodes, but
may just embed the additional nodes into the pruned version
of the graph. If a Robust Soliton distribution is used, the
computational cost amounts to O(k log k) and if a constant
average degree output symbol degree distribution is used, as
in raptor-like scenarios, the computational cost is O(k). In
[8], it was shown that the algorithms for LDPC decoding over
BEC(e) and LDGM encoding for BEQ(1−e) concurrently fail
or succeed when the codes used for both problems are dual.
The same clearly holds for the algorithms 1 and 2 presented
here.

Algorithm 1 LT decoding over BEC(e)
Input: channel output z ∈ An, decoding graph GGLT [1:n]

representing the first n columns of the LT generator matrix.
Output: information sequence x ∈ {0, 1}k

Remove erased output nodes from the graph. Assign an all-
erasures vector x to input nodes.
while x has at least one erased sample do

Find unerased output node a connected to exactly one
erased input node i.
if there is no such output node then

return FAILURE.
else

set xi = za, and add xi to all unerased outputs zb, with
b �= a connected to i.

end if
end while
return x

B. Asymptotic rates

In [10], Luby presented properties of the Robust Soliton
distribution. He proved that the number of received (unerased)
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Algorithm 2 Dual LT encoding for BEQ(e)
Input: source z ∈ An, decoding graph GH=GLT [1:n]T .
Output: codeword y ∈ {0, 1}n.

Remove unerased bit nodes from the graph. Assign a
vector x to check nodes, obtained as a summation of the
neighbouring unerased bit variables.
while x has at least one unerased sample do

Find erased source node i connected to exactly one
unerased check node a
if there is no such source node then

return FAILURE.
else

reserve source variable zi to later satisfy check xa, and
erase check xa.

end if
end while
Set unreserved source variables to an arbitrary binary se-
quence. Work backward through reserved source variables
and set them to satisfy corresponding checks.
return z

coded symbols sufficient to decode an information sequence
of length k is:

k′ = k + O(
√

k ln2(k/δ)), (9)

where δ is allowed failure probability of the decoder. This
means that the achieved code rate when transmitting over a
BEC(e) is at least:

k

n
=

k(1 − e)
k′ =

k(1 − e)
k + O(

√
k ln2(k/δ))

, (10)

which approaches capacity 1 − e, when k grows large.
Algorithms 1 and 2 both fail or succeed together on the
same realization of the factor graph with exchanged erased
and unerased output (source) symbols. Thus, the achieved
compression rate for the BEQ(e′ = 1− e) problem is at most

n − k

n
=

k(1 − e′) + O(
√

k ln2(k/δ))
k + O(

√
k ln2(k/δ))

, (11)

which also approaches the optimal rate of 1 − e′. This way,
we have proved that dual LT codes with a Robust Soliton
distribution at source nodes approach the optimal rate for any
e′.

C. Raptor-like scenario

In order to allow for degree distributions with constant
(independent of k) average degree, one may introduce some
kind of precoding, as in raptor codes. This is done through
introducing additional parity checks, as well as additional
“deterministic source nodes” all equal to a ∗-value, to the
decoding graph. The outer LDPC code as a precode for a
raptor code in the dual version becomes an outer LDGM code.
Thus, the precode-portion of the decoding graph corresponds
to the dual code of the precode of a raptor code. Note that
there is a simple interpretation of this procedure in terms of the

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0

100

200

300

400

500

600

R=(n−k)/n : achieved compression rate 

nu
m

be
r 

of
 s

uc
ce

ss
fu

l q
ua

nt
iz

at
io

ns

optimal
compression

rate

Fig. 1. Histogram showing the achieved compression rate of the dual LT
code binary erasure quantization.
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Fig. 2. Histogram showing the achieved compression rate of the dual raptor
code binary erasure quantization.

aforementioned arguments on the lower bound on the average
degree - additional source nodes deterministically set to ∗-
value instigate higher probability that every check is connected
to at least one erased source symbol.

IV. SIMULATION RESULTS

We have performed quantization of source X on A, dis-
tributed with e = 0.5, with the dual LT code with the number
of checks k = 10000. The length and rate of the dual LT code
were variable, starting from the optimal nmin = 20000 and
were increased at equal steps of ∆n = 100 up to the length
(rate) where quantization was successful, i.e., all the checks
were satisfied. Fig. 1 shows the histogram of the achieved
compression rate. We used a dual LT code with robust soliton
source symbol degree distribution ΩRS(k = 10000, 0.03, 0.5),
and performed 2000 trials. Average achieved rate was RAV =
0.5285.
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Fig. 3. Quantization failure probability as it decreases with the increase of
compression rate.

Also, we have performed quantization of the same source
X , with dual raptor code. Starting number of checks was k =
10000, and precode was the dual of an LDPC/Half hybrid high
rate code [14]. Source symbol degree distribution was set to
a constant average distribution

Ω(x) = 0.007969x + 0.493570x2 + 0.166220x3 +
0.072646x4 + 0.082558x5 + 0.056058x8 +
0.037229x9 + 0.055590x19 + 0.025023x64 +
0.003135x66, (12)

used for generation of LT encoded symbols in raptor codes
[11].

Fig. 2 shows the histogram of the achieved compression
rates using the dual raptor code. Although the average achieved
rate RAV = 0.5266 was only slightly better than that of dual
LT codes, use of dual raptor codes does lead to two major
advantages. Namely, as was discussed above, computational
cost of dual raptor quantization is significantly lower than
that of dual robust soliton LT quantization as quantization
complexity is linear in k. Furthermore, the probability of
quantization failure diminishes much faster. The latter is
illustrated in Fig. 3.

V. CONCLUSION

By exploiting the concept of ratelessness, fountain codes
have initiated great enthusiasm in the channel coding commu-
nity and shifted the channel coding paradigm over the last few
years. At the time when sparse graph codes are sought to be
employed for lossy source coding and algorithmic obstacles
for doing so are being confronted, the question of applying
ideas of fountain codes in order to produce rate adaptive lossy
source coding methods arises naturally. Whereas the majority
of work investigating lossy source coding and sparse graph
codes to date was focused on LDGM codes, as duals of
good LDPC codes, this contribution argues that by dualizing

fountain codes good LDPC codes for lossy source coding may
be constructed as well. Furthermore, these dual fountain codes
exhibit the sought after property to adapt the rate on the fly.
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